blob: a77be4499f14a8706f79816aac95236255b1ce43 [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: tbennun@gmail.com (Tal Ben-Nun)
30//
31
32#ifndef CERES_PUBLIC_NUMERIC_DIFF_OPTIONS_H_
33#define CERES_PUBLIC_NUMERIC_DIFF_OPTIONS_H_
34
35#include "ceres/internal/port.h"
36
37namespace ceres {
38
39// Options pertaining to numeric differentiation (e.g., convergence criteria,
40// step sizes).
41struct CERES_EXPORT NumericDiffOptions {
42 // Numeric differentiation step size (multiplied by parameter block's
43 // order of magnitude). If parameters are close to zero, the step size
44 // is set to sqrt(machine_epsilon).
45 double relative_step_size = 1e-6;
46
47 // Initial step size for Ridders adaptive numeric differentiation (multiplied
48 // by parameter block's order of magnitude).
49 // If parameters are close to zero, Ridders' method sets the step size
50 // directly to this value. This parameter is separate from
51 // "relative_step_size" in order to set a different default value.
52 //
53 // Note: For Ridders' method to converge, the step size should be initialized
54 // to a value that is large enough to produce a significant change in the
55 // function. As the derivative is estimated, the step size decreases.
56 double ridders_relative_initial_step_size = 1e-2;
57
58 // Maximal number of adaptive extrapolations (sampling) in Ridders' method.
59 int max_num_ridders_extrapolations = 10;
60
61 // Convergence criterion on extrapolation error for Ridders adaptive
62 // differentiation. The available error estimation methods are defined in
63 // NumericDiffErrorType and set in the "ridders_error_method" field.
64 double ridders_epsilon = 1e-12;
65
66 // The factor in which to shrink the step size with each extrapolation in
67 // Ridders' method.
68 double ridders_step_shrink_factor = 2.0;
69};
70
71} // namespace ceres
72
73#endif // CERES_PUBLIC_NUMERIC_DIFF_OPTIONS_H_