Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame^] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | // |
| 31 | // When an iteration callback is specified, Ceres calls the callback |
| 32 | // after each minimizer step (if the minimizer has not converged) and |
| 33 | // passes it an IterationSummary object, defined below. |
| 34 | |
| 35 | #ifndef CERES_PUBLIC_ITERATION_CALLBACK_H_ |
| 36 | #define CERES_PUBLIC_ITERATION_CALLBACK_H_ |
| 37 | |
| 38 | #include "ceres/types.h" |
| 39 | #include "ceres/internal/disable_warnings.h" |
| 40 | |
| 41 | namespace ceres { |
| 42 | |
| 43 | // This struct describes the state of the optimizer after each |
| 44 | // iteration of the minimization. |
| 45 | struct CERES_EXPORT IterationSummary { |
| 46 | IterationSummary() |
| 47 | : iteration(0), |
| 48 | step_is_valid(false), |
| 49 | step_is_nonmonotonic(false), |
| 50 | step_is_successful(false), |
| 51 | cost(0.0), |
| 52 | cost_change(0.0), |
| 53 | gradient_max_norm(0.0), |
| 54 | gradient_norm(0.0), |
| 55 | step_norm(0.0), |
| 56 | eta(0.0), |
| 57 | step_size(0.0), |
| 58 | line_search_function_evaluations(0), |
| 59 | line_search_gradient_evaluations(0), |
| 60 | line_search_iterations(0), |
| 61 | linear_solver_iterations(0), |
| 62 | iteration_time_in_seconds(0.0), |
| 63 | step_solver_time_in_seconds(0.0), |
| 64 | cumulative_time_in_seconds(0.0) {} |
| 65 | |
| 66 | // Current iteration number. |
| 67 | int iteration; |
| 68 | |
| 69 | // Step was numerically valid, i.e., all values are finite and the |
| 70 | // step reduces the value of the linearized model. |
| 71 | // |
| 72 | // Note: step_is_valid is always true when iteration = 0. |
| 73 | bool step_is_valid; |
| 74 | |
| 75 | // Step did not reduce the value of the objective function |
| 76 | // sufficiently, but it was accepted because of the relaxed |
| 77 | // acceptance criterion used by the non-monotonic trust region |
| 78 | // algorithm. |
| 79 | // |
| 80 | // Note: step_is_nonmonotonic is always false when iteration = 0; |
| 81 | bool step_is_nonmonotonic; |
| 82 | |
| 83 | // Whether or not the minimizer accepted this step or not. If the |
| 84 | // ordinary trust region algorithm is used, this means that the |
| 85 | // relative reduction in the objective function value was greater |
| 86 | // than Solver::Options::min_relative_decrease. However, if the |
| 87 | // non-monotonic trust region algorithm is used |
| 88 | // (Solver::Options:use_nonmonotonic_steps = true), then even if the |
| 89 | // relative decrease is not sufficient, the algorithm may accept the |
| 90 | // step and the step is declared successful. |
| 91 | // |
| 92 | // Note: step_is_successful is always true when iteration = 0. |
| 93 | bool step_is_successful; |
| 94 | |
| 95 | // Value of the objective function. |
| 96 | double cost; |
| 97 | |
| 98 | // Change in the value of the objective function in this |
| 99 | // iteration. This can be positive or negative. |
| 100 | double cost_change; |
| 101 | |
| 102 | // Infinity norm of the gradient vector. |
| 103 | double gradient_max_norm; |
| 104 | |
| 105 | // 2-norm of the gradient vector. |
| 106 | double gradient_norm; |
| 107 | |
| 108 | // 2-norm of the size of the step computed by the optimization |
| 109 | // algorithm. |
| 110 | double step_norm; |
| 111 | |
| 112 | // For trust region algorithms, the ratio of the actual change in |
| 113 | // cost and the change in the cost of the linearized approximation. |
| 114 | double relative_decrease; |
| 115 | |
| 116 | // Size of the trust region at the end of the current iteration. For |
| 117 | // the Levenberg-Marquardt algorithm, the regularization parameter |
| 118 | // mu = 1.0 / trust_region_radius. |
| 119 | double trust_region_radius; |
| 120 | |
| 121 | // For the inexact step Levenberg-Marquardt algorithm, this is the |
| 122 | // relative accuracy with which the Newton(LM) step is solved. This |
| 123 | // number affects only the iterative solvers capable of solving |
| 124 | // linear systems inexactly. Factorization-based exact solvers |
| 125 | // ignore it. |
| 126 | double eta; |
| 127 | |
| 128 | // Step sized computed by the line search algorithm. |
| 129 | double step_size; |
| 130 | |
| 131 | // Number of function value evaluations used by the line search algorithm. |
| 132 | int line_search_function_evaluations; |
| 133 | |
| 134 | // Number of function gradient evaluations used by the line search algorithm. |
| 135 | int line_search_gradient_evaluations; |
| 136 | |
| 137 | // Number of iterations taken by the line search algorithm. |
| 138 | int line_search_iterations; |
| 139 | |
| 140 | // Number of iterations taken by the linear solver to solve for the |
| 141 | // Newton step. |
| 142 | int linear_solver_iterations; |
| 143 | |
| 144 | // All times reported below are wall times. |
| 145 | |
| 146 | // Time (in seconds) spent inside the minimizer loop in the current |
| 147 | // iteration. |
| 148 | double iteration_time_in_seconds; |
| 149 | |
| 150 | // Time (in seconds) spent inside the trust region step solver. |
| 151 | double step_solver_time_in_seconds; |
| 152 | |
| 153 | // Time (in seconds) since the user called Solve(). |
| 154 | double cumulative_time_in_seconds; |
| 155 | }; |
| 156 | |
| 157 | // Interface for specifying callbacks that are executed at the end of |
| 158 | // each iteration of the Minimizer. The solver uses the return value |
| 159 | // of operator() to decide whether to continue solving or to |
| 160 | // terminate. The user can return three values. |
| 161 | // |
| 162 | // SOLVER_ABORT indicates that the callback detected an abnormal |
| 163 | // situation. The solver returns without updating the parameter blocks |
| 164 | // (unless Solver::Options::update_state_every_iteration is set |
| 165 | // true). Solver returns with Solver::Summary::termination_type set to |
| 166 | // USER_ABORT. |
| 167 | // |
| 168 | // SOLVER_TERMINATE_SUCCESSFULLY indicates that there is no need to |
| 169 | // optimize anymore (some user specified termination criterion has |
| 170 | // been met). Solver returns with Solver::Summary::termination_type |
| 171 | // set to USER_SUCCESS. |
| 172 | // |
| 173 | // SOLVER_CONTINUE indicates that the solver should continue |
| 174 | // optimizing. |
| 175 | // |
| 176 | // For example, the following Callback is used internally by Ceres to |
| 177 | // log the progress of the optimization. |
| 178 | // |
| 179 | // Callback for logging the state of the minimizer to STDERR or STDOUT |
| 180 | // depending on the user's preferences and logging level. |
| 181 | // |
| 182 | // class LoggingCallback : public IterationCallback { |
| 183 | // public: |
| 184 | // explicit LoggingCallback(bool log_to_stdout) |
| 185 | // : log_to_stdout_(log_to_stdout) {} |
| 186 | // |
| 187 | // ~LoggingCallback() {} |
| 188 | // |
| 189 | // CallbackReturnType operator()(const IterationSummary& summary) { |
| 190 | // const char* kReportRowFormat = |
| 191 | // "% 4d: f:% 8e d:% 3.2e g:% 3.2e h:% 3.2e " |
| 192 | // "rho:% 3.2e mu:% 3.2e eta:% 3.2e li:% 3d"; |
| 193 | // string output = StringPrintf(kReportRowFormat, |
| 194 | // summary.iteration, |
| 195 | // summary.cost, |
| 196 | // summary.cost_change, |
| 197 | // summary.gradient_max_norm, |
| 198 | // summary.step_norm, |
| 199 | // summary.relative_decrease, |
| 200 | // summary.trust_region_radius, |
| 201 | // summary.eta, |
| 202 | // summary.linear_solver_iterations); |
| 203 | // if (log_to_stdout_) { |
| 204 | // cout << output << endl; |
| 205 | // } else { |
| 206 | // VLOG(1) << output; |
| 207 | // } |
| 208 | // return SOLVER_CONTINUE; |
| 209 | // } |
| 210 | // |
| 211 | // private: |
| 212 | // const bool log_to_stdout_; |
| 213 | // }; |
| 214 | // |
| 215 | class CERES_EXPORT IterationCallback { |
| 216 | public: |
| 217 | virtual ~IterationCallback() {} |
| 218 | virtual CallbackReturnType operator()(const IterationSummary& summary) = 0; |
| 219 | }; |
| 220 | |
| 221 | } // namespace ceres |
| 222 | |
| 223 | #include "ceres/internal/reenable_warnings.h" |
| 224 | |
| 225 | #endif // CERES_PUBLIC_ITERATION_CALLBACK_H_ |