blob: bd1e78249dc805c045109ce643e7253b2ec9a06f [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30//
31// When an iteration callback is specified, Ceres calls the callback
32// after each minimizer step (if the minimizer has not converged) and
33// passes it an IterationSummary object, defined below.
34
35#ifndef CERES_PUBLIC_ITERATION_CALLBACK_H_
36#define CERES_PUBLIC_ITERATION_CALLBACK_H_
37
38#include "ceres/types.h"
39#include "ceres/internal/disable_warnings.h"
40
41namespace ceres {
42
43// This struct describes the state of the optimizer after each
44// iteration of the minimization.
45struct CERES_EXPORT IterationSummary {
46 IterationSummary()
47 : iteration(0),
48 step_is_valid(false),
49 step_is_nonmonotonic(false),
50 step_is_successful(false),
51 cost(0.0),
52 cost_change(0.0),
53 gradient_max_norm(0.0),
54 gradient_norm(0.0),
55 step_norm(0.0),
56 eta(0.0),
57 step_size(0.0),
58 line_search_function_evaluations(0),
59 line_search_gradient_evaluations(0),
60 line_search_iterations(0),
61 linear_solver_iterations(0),
62 iteration_time_in_seconds(0.0),
63 step_solver_time_in_seconds(0.0),
64 cumulative_time_in_seconds(0.0) {}
65
66 // Current iteration number.
67 int iteration;
68
69 // Step was numerically valid, i.e., all values are finite and the
70 // step reduces the value of the linearized model.
71 //
72 // Note: step_is_valid is always true when iteration = 0.
73 bool step_is_valid;
74
75 // Step did not reduce the value of the objective function
76 // sufficiently, but it was accepted because of the relaxed
77 // acceptance criterion used by the non-monotonic trust region
78 // algorithm.
79 //
80 // Note: step_is_nonmonotonic is always false when iteration = 0;
81 bool step_is_nonmonotonic;
82
83 // Whether or not the minimizer accepted this step or not. If the
84 // ordinary trust region algorithm is used, this means that the
85 // relative reduction in the objective function value was greater
86 // than Solver::Options::min_relative_decrease. However, if the
87 // non-monotonic trust region algorithm is used
88 // (Solver::Options:use_nonmonotonic_steps = true), then even if the
89 // relative decrease is not sufficient, the algorithm may accept the
90 // step and the step is declared successful.
91 //
92 // Note: step_is_successful is always true when iteration = 0.
93 bool step_is_successful;
94
95 // Value of the objective function.
96 double cost;
97
98 // Change in the value of the objective function in this
99 // iteration. This can be positive or negative.
100 double cost_change;
101
102 // Infinity norm of the gradient vector.
103 double gradient_max_norm;
104
105 // 2-norm of the gradient vector.
106 double gradient_norm;
107
108 // 2-norm of the size of the step computed by the optimization
109 // algorithm.
110 double step_norm;
111
112 // For trust region algorithms, the ratio of the actual change in
113 // cost and the change in the cost of the linearized approximation.
114 double relative_decrease;
115
116 // Size of the trust region at the end of the current iteration. For
117 // the Levenberg-Marquardt algorithm, the regularization parameter
118 // mu = 1.0 / trust_region_radius.
119 double trust_region_radius;
120
121 // For the inexact step Levenberg-Marquardt algorithm, this is the
122 // relative accuracy with which the Newton(LM) step is solved. This
123 // number affects only the iterative solvers capable of solving
124 // linear systems inexactly. Factorization-based exact solvers
125 // ignore it.
126 double eta;
127
128 // Step sized computed by the line search algorithm.
129 double step_size;
130
131 // Number of function value evaluations used by the line search algorithm.
132 int line_search_function_evaluations;
133
134 // Number of function gradient evaluations used by the line search algorithm.
135 int line_search_gradient_evaluations;
136
137 // Number of iterations taken by the line search algorithm.
138 int line_search_iterations;
139
140 // Number of iterations taken by the linear solver to solve for the
141 // Newton step.
142 int linear_solver_iterations;
143
144 // All times reported below are wall times.
145
146 // Time (in seconds) spent inside the minimizer loop in the current
147 // iteration.
148 double iteration_time_in_seconds;
149
150 // Time (in seconds) spent inside the trust region step solver.
151 double step_solver_time_in_seconds;
152
153 // Time (in seconds) since the user called Solve().
154 double cumulative_time_in_seconds;
155};
156
157// Interface for specifying callbacks that are executed at the end of
158// each iteration of the Minimizer. The solver uses the return value
159// of operator() to decide whether to continue solving or to
160// terminate. The user can return three values.
161//
162// SOLVER_ABORT indicates that the callback detected an abnormal
163// situation. The solver returns without updating the parameter blocks
164// (unless Solver::Options::update_state_every_iteration is set
165// true). Solver returns with Solver::Summary::termination_type set to
166// USER_ABORT.
167//
168// SOLVER_TERMINATE_SUCCESSFULLY indicates that there is no need to
169// optimize anymore (some user specified termination criterion has
170// been met). Solver returns with Solver::Summary::termination_type
171// set to USER_SUCCESS.
172//
173// SOLVER_CONTINUE indicates that the solver should continue
174// optimizing.
175//
176// For example, the following Callback is used internally by Ceres to
177// log the progress of the optimization.
178//
179// Callback for logging the state of the minimizer to STDERR or STDOUT
180// depending on the user's preferences and logging level.
181//
182// class LoggingCallback : public IterationCallback {
183// public:
184// explicit LoggingCallback(bool log_to_stdout)
185// : log_to_stdout_(log_to_stdout) {}
186//
187// ~LoggingCallback() {}
188//
189// CallbackReturnType operator()(const IterationSummary& summary) {
190// const char* kReportRowFormat =
191// "% 4d: f:% 8e d:% 3.2e g:% 3.2e h:% 3.2e "
192// "rho:% 3.2e mu:% 3.2e eta:% 3.2e li:% 3d";
193// string output = StringPrintf(kReportRowFormat,
194// summary.iteration,
195// summary.cost,
196// summary.cost_change,
197// summary.gradient_max_norm,
198// summary.step_norm,
199// summary.relative_decrease,
200// summary.trust_region_radius,
201// summary.eta,
202// summary.linear_solver_iterations);
203// if (log_to_stdout_) {
204// cout << output << endl;
205// } else {
206// VLOG(1) << output;
207// }
208// return SOLVER_CONTINUE;
209// }
210//
211// private:
212// const bool log_to_stdout_;
213// };
214//
215class CERES_EXPORT IterationCallback {
216 public:
217 virtual ~IterationCallback() {}
218 virtual CallbackReturnType operator()(const IterationSummary& summary) = 0;
219};
220
221} // namespace ceres
222
223#include "ceres/internal/reenable_warnings.h"
224
225#endif // CERES_PUBLIC_ITERATION_CALLBACK_H_