blob: ff47fbf894cf5a4e19a592534c6fce570bb68c6c [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: keir@google.com (Keir Mierle)
30//
31// Computation of the Jacobian matrix for vector-valued functions of multiple
32// variables, using automatic differentiation based on the implementation of
33// dual numbers in jet.h. Before reading the rest of this file, it is advisable
34// to read jet.h's header comment in detail.
35//
36// The helper wrapper AutoDifferentiate() computes the jacobian of
37// functors with templated operator() taking this form:
38//
39// struct F {
40// template<typename T>
41// bool operator()(const T *x, const T *y, ..., T *z) {
42// // Compute z[] based on x[], y[], ...
43// // return true if computation succeeded, false otherwise.
44// }
45// };
46//
47// All inputs and outputs may be vector-valued.
48//
49// To understand how jets are used to compute the jacobian, a
50// picture may help. Consider a vector-valued function, F, returning 3
51// dimensions and taking a vector-valued parameter of 4 dimensions:
52//
53// y x
54// [ * ] F [ * ]
55// [ * ] <--- [ * ]
56// [ * ] [ * ]
57// [ * ]
58//
59// Similar to the 2-parameter example for f described in jet.h, computing the
60// jacobian dy/dx is done by substituting a suitable jet object for x and all
61// intermediate steps of the computation of F. Since x is has 4 dimensions, use
62// a Jet<double, 4>.
63//
64// Before substituting a jet object for x, the dual components are set
65// appropriately for each dimension of x:
66//
67// y x
68// [ * | * * * * ] f [ * | 1 0 0 0 ] x0
69// [ * | * * * * ] <--- [ * | 0 1 0 0 ] x1
70// [ * | * * * * ] [ * | 0 0 1 0 ] x2
71// ---+--- [ * | 0 0 0 1 ] x3
72// | ^ ^ ^ ^
73// dy/dx | | | +----- infinitesimal for x3
74// | | +------- infinitesimal for x2
75// | +--------- infinitesimal for x1
76// +----------- infinitesimal for x0
77//
78// The reason to set the internal 4x4 submatrix to the identity is that we wish
79// to take the derivative of y separately with respect to each dimension of x.
80// Each column of the 4x4 identity is therefore for a single component of the
81// independent variable x.
82//
83// Then the jacobian of the mapping, dy/dx, is the 3x4 sub-matrix of the
84// extended y vector, indicated in the above diagram.
85//
86// Functors with multiple parameters
87// ---------------------------------
88// In practice, it is often convenient to use a function f of two or more
89// vector-valued parameters, for example, x[3] and z[6]. Unfortunately, the jet
90// framework is designed for a single-parameter vector-valued input. The wrapper
91// in this file addresses this issue adding support for functions with one or
92// more parameter vectors.
93//
94// To support multiple parameters, all the parameter vectors are concatenated
95// into one and treated as a single parameter vector, except that since the
96// functor expects different inputs, we need to construct the jets as if they
97// were part of a single parameter vector. The extended jets are passed
98// separately for each parameter.
99//
100// For example, consider a functor F taking two vector parameters, p[2] and
101// q[3], and producing an output y[4]:
102//
103// struct F {
104// template<typename T>
105// bool operator()(const T *p, const T *q, T *z) {
106// // ...
107// }
108// };
109//
110// In this case, the necessary jet type is Jet<double, 5>. Here is a
111// visualization of the jet objects in this case:
112//
113// Dual components for p ----+
114// |
115// -+-
116// y [ * | 1 0 | 0 0 0 ] --- p[0]
117// [ * | 0 1 | 0 0 0 ] --- p[1]
118// [ * | . . | + + + ] |
119// [ * | . . | + + + ] v
120// [ * | . . | + + + ] <--- F(p, q)
121// [ * | . . | + + + ] ^
122// ^^^ ^^^^^ |
123// dy/dp dy/dq [ * | 0 0 | 1 0 0 ] --- q[0]
124// [ * | 0 0 | 0 1 0 ] --- q[1]
125// [ * | 0 0 | 0 0 1 ] --- q[2]
126// --+--
127// |
128// Dual components for q --------------+
129//
130// where the 4x2 submatrix (marked with ".") and 4x3 submatrix (marked with "+"
131// of y in the above diagram are the derivatives of y with respect to p and q
132// respectively. This is how autodiff works for functors taking multiple vector
133// valued arguments (up to 6).
134//
135// Jacobian NULL pointers
136// ----------------------
137// In general, the functions below will accept NULL pointers for all or some of
138// the Jacobian parameters, meaning that those Jacobians will not be computed.
139
140#ifndef CERES_PUBLIC_INTERNAL_AUTODIFF_H_
141#define CERES_PUBLIC_INTERNAL_AUTODIFF_H_
142
143#include <stddef.h>
144
145#include <array>
146
147#include "ceres/internal/eigen.h"
148#include "ceres/internal/fixed_array.h"
149#include "ceres/internal/parameter_dims.h"
150#include "ceres/internal/variadic_evaluate.h"
151#include "ceres/jet.h"
152#include "ceres/types.h"
153#include "glog/logging.h"
154
155namespace ceres {
156namespace internal {
157
158// Extends src by a 1st order perturbation for every dimension and puts it in
159// dst. The size of src is N. Since this is also used for perturbations in
160// blocked arrays, offset is used to shift which part of the jet the
161// perturbation occurs. This is used to set up the extended x augmented by an
162// identity matrix. The JetT type should be a Jet type, and T should be a
163// numeric type (e.g. double). For example,
164//
165// 0 1 2 3 4 5 6 7 8
166// dst[0] [ * | . . | 1 0 0 | . . . ]
167// dst[1] [ * | . . | 0 1 0 | . . . ]
168// dst[2] [ * | . . | 0 0 1 | . . . ]
169//
170// is what would get put in dst if N was 3, offset was 3, and the jet type JetT
171// was 8-dimensional.
172template <int Offset, int N, typename T, typename JetT>
173inline void Make1stOrderPerturbation(const T* src, JetT* dst) {
174 DCHECK(src);
175 DCHECK(dst);
176 for (int j = 0; j < N; ++j) {
177 dst[j].a = src[j];
178 dst[j].v.setZero();
179 dst[j].v[Offset + j] = T(1.0);
180 }
181}
182
183// Calls Make1stOrderPerturbation for every parameter block.
184//
185// Example:
186// If one having three parameter blocks with dimensions (3, 2, 4), the call
187// Make1stOrderPerturbations<integer_sequence<3, 2, 4>::Apply(params, x);
188// will result in the following calls to Make1stOrderPerturbation:
189// Make1stOrderPerturbation<0, 3>(params[0], x + 0);
190// Make1stOrderPerturbation<3, 2>(params[1], x + 3);
191// Make1stOrderPerturbation<5, 4>(params[2], x + 5);
192template <typename Seq, int ParameterIdx = 0, int Offset = 0>
193struct Make1stOrderPerturbations;
194
195template <int N, int... Ns, int ParameterIdx, int Offset>
196struct Make1stOrderPerturbations<integer_sequence<int, N, Ns...>, ParameterIdx,
197 Offset> {
198 template <typename T, typename JetT>
199 static void Apply(T const* const* parameters, JetT* x) {
200 Make1stOrderPerturbation<Offset, N>(parameters[ParameterIdx], x + Offset);
201 Make1stOrderPerturbations<integer_sequence<int, Ns...>, ParameterIdx + 1,
202 Offset + N>::Apply(parameters, x);
203 }
204};
205
206// End of 'recursion'. Nothing more to do.
207template <int ParameterIdx, int Total>
208struct Make1stOrderPerturbations<integer_sequence<int>, ParameterIdx, Total> {
209 template <typename T, typename JetT>
210 static void Apply(T const* const* /* NOT USED */, JetT* /* NOT USED */) {}
211};
212
213// Takes the 0th order part of src, assumed to be a Jet type, and puts it in
214// dst. This is used to pick out the "vector" part of the extended y.
215template <typename JetT, typename T>
216inline void Take0thOrderPart(int M, const JetT* src, T dst) {
217 DCHECK(src);
218 for (int i = 0; i < M; ++i) {
219 dst[i] = src[i].a;
220 }
221}
222
223// Takes N 1st order parts, starting at index N0, and puts them in the M x N
224// matrix 'dst'. This is used to pick out the "matrix" parts of the extended y.
225template <int N0, int N, typename JetT, typename T>
226inline void Take1stOrderPart(const int M, const JetT* src, T* dst) {
227 DCHECK(src);
228 DCHECK(dst);
229 for (int i = 0; i < M; ++i) {
230 Eigen::Map<Eigen::Matrix<T, N, 1>>(dst + N * i, N) =
231 src[i].v.template segment<N>(N0);
232 }
233}
234
235// Calls Take1stOrderPart for every parameter block.
236//
237// Example:
238// If one having three parameter blocks with dimensions (3, 2, 4), the call
239// Take1stOrderParts<integer_sequence<3, 2, 4>::Apply(num_outputs,
240// output,
241// jacobians);
242// will result in the following calls to Take1stOrderPart:
243// if (jacobians[0]) {
244// Take1stOrderPart<0, 3>(num_outputs, output, jacobians[0]);
245// }
246// if (jacobians[1]) {
247// Take1stOrderPart<3, 2>(num_outputs, output, jacobians[1]);
248// }
249// if (jacobians[2]) {
250// Take1stOrderPart<5, 4>(num_outputs, output, jacobians[2]);
251// }
252template <typename Seq, int ParameterIdx = 0, int Offset = 0>
253struct Take1stOrderParts;
254
255template <int N, int... Ns, int ParameterIdx, int Offset>
256struct Take1stOrderParts<integer_sequence<int, N, Ns...>, ParameterIdx,
257 Offset> {
258 template <typename JetT, typename T>
259 static void Apply(int num_outputs, JetT* output, T** jacobians) {
260 if (jacobians[ParameterIdx]) {
261 Take1stOrderPart<Offset, N>(num_outputs, output, jacobians[ParameterIdx]);
262 }
263 Take1stOrderParts<integer_sequence<int, Ns...>, ParameterIdx + 1,
264 Offset + N>::Apply(num_outputs, output, jacobians);
265 }
266};
267
268// End of 'recursion'. Nothing more to do.
269template <int ParameterIdx, int Offset>
270struct Take1stOrderParts<integer_sequence<int>, ParameterIdx, Offset> {
271 template <typename T, typename JetT>
272 static void Apply(int /* NOT USED*/, JetT* /* NOT USED*/,
273 T** /* NOT USED */) {}
274};
275
276template <typename ParameterDims, typename Functor, typename T>
277inline bool AutoDifferentiate(const Functor& functor,
278 T const *const *parameters,
279 int num_outputs,
280 T* function_value,
281 T** jacobians) {
282 DCHECK_GT(num_outputs, 0);
283
284 typedef Jet<T, ParameterDims::kNumParameters> JetT;
285 FixedArray<JetT, (256 * 7) / sizeof(JetT)> x(ParameterDims::kNumParameters +
286 num_outputs);
287
288 using Parameters = typename ParameterDims::Parameters;
289
290 // These are the positions of the respective jets in the fixed array x.
291 std::array<JetT*, ParameterDims::kNumParameterBlocks> unpacked_parameters =
292 ParameterDims::GetUnpackedParameters(x.get());
293 JetT* output = x.get() + ParameterDims::kNumParameters;
294
295 // Invalidate the output Jets, so that we can detect if the user
296 // did not assign values to all of them.
297 for (int i = 0; i < num_outputs; ++i) {
298 output[i].a = kImpossibleValue;
299 output[i].v.setConstant(kImpossibleValue);
300 }
301
302 Make1stOrderPerturbations<Parameters>::Apply(parameters, x.get());
303
304 if (!VariadicEvaluate<ParameterDims>(functor, unpacked_parameters.data(),
305 output)) {
306 return false;
307 }
308
309 Take0thOrderPart(num_outputs, output, function_value);
310 Take1stOrderParts<Parameters>::Apply(num_outputs, output, jacobians);
311
312 return true;
313}
314
315} // namespace internal
316} // namespace ceres
317
318#endif // CERES_PUBLIC_INTERNAL_AUTODIFF_H_