Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame^] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #ifndef CERES_PUBLIC_GRADIENT_PROBLEM_H_ |
| 32 | #define CERES_PUBLIC_GRADIENT_PROBLEM_H_ |
| 33 | |
| 34 | #include <memory> |
| 35 | #include "ceres/internal/port.h" |
| 36 | #include "ceres/local_parameterization.h" |
| 37 | |
| 38 | namespace ceres { |
| 39 | |
| 40 | class FirstOrderFunction; |
| 41 | |
| 42 | // Instances of GradientProblem represent general non-linear |
| 43 | // optimization problems that must be solved using just the value of |
| 44 | // the objective function and its gradient. Unlike the Problem class, |
| 45 | // which can only be used to model non-linear least squares problems, |
| 46 | // instances of GradientProblem not restricted in the form of the |
| 47 | // objective function. |
| 48 | // |
| 49 | // Structurally GradientProblem is a composition of a |
| 50 | // FirstOrderFunction and optionally a LocalParameterization. |
| 51 | // |
| 52 | // The FirstOrderFunction is responsible for evaluating the cost and |
| 53 | // gradient of the objective function. |
| 54 | // |
| 55 | // The LocalParameterization is responsible for going back and forth |
| 56 | // between the ambient space and the local tangent space. (See |
| 57 | // local_parameterization.h for more details). When a |
| 58 | // LocalParameterization is not provided, then the tangent space is |
| 59 | // assumed to coincide with the ambient Euclidean space that the |
| 60 | // gradient vector lives in. |
| 61 | // |
| 62 | // Example usage: |
| 63 | // |
| 64 | // The following demonstrate the problem construction for Rosenbrock's function |
| 65 | // |
| 66 | // f(x,y) = (1-x)^2 + 100(y - x^2)^2; |
| 67 | // |
| 68 | // class Rosenbrock : public ceres::FirstOrderFunction { |
| 69 | // public: |
| 70 | // virtual ~Rosenbrock() {} |
| 71 | // |
| 72 | // virtual bool Evaluate(const double* parameters, |
| 73 | // double* cost, |
| 74 | // double* gradient) const { |
| 75 | // const double x = parameters[0]; |
| 76 | // const double y = parameters[1]; |
| 77 | // |
| 78 | // cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x); |
| 79 | // if (gradient != NULL) { |
| 80 | // gradient[0] = -2.0 * (1.0 - x) - 200.0 * (y - x * x) * 2.0 * x; |
| 81 | // gradient[1] = 200.0 * (y - x * x); |
| 82 | // } |
| 83 | // return true; |
| 84 | // }; |
| 85 | // |
| 86 | // virtual int NumParameters() const { return 2; }; |
| 87 | // }; |
| 88 | // |
| 89 | // ceres::GradientProblem problem(new Rosenbrock()); |
| 90 | class CERES_EXPORT GradientProblem { |
| 91 | public: |
| 92 | // Takes ownership of the function. |
| 93 | explicit GradientProblem(FirstOrderFunction* function); |
| 94 | |
| 95 | // Takes ownership of the function and the parameterization. |
| 96 | GradientProblem(FirstOrderFunction* function, |
| 97 | LocalParameterization* parameterization); |
| 98 | |
| 99 | int NumParameters() const; |
| 100 | int NumLocalParameters() const; |
| 101 | |
| 102 | // This call is not thread safe. |
| 103 | bool Evaluate(const double* parameters, double* cost, double* gradient) const; |
| 104 | bool Plus(const double* x, const double* delta, double* x_plus_delta) const; |
| 105 | |
| 106 | private: |
| 107 | std::unique_ptr<FirstOrderFunction> function_; |
| 108 | std::unique_ptr<LocalParameterization> parameterization_; |
| 109 | std::unique_ptr<double[]> scratch_; |
| 110 | }; |
| 111 | |
| 112 | // A FirstOrderFunction object implements the evaluation of a function |
| 113 | // and its gradient. |
| 114 | class CERES_EXPORT FirstOrderFunction { |
| 115 | public: |
| 116 | virtual ~FirstOrderFunction() {} |
| 117 | // cost is never NULL. gradient may be null. |
| 118 | virtual bool Evaluate(const double* const parameters, |
| 119 | double* cost, |
| 120 | double* gradient) const = 0; |
| 121 | virtual int NumParameters() const = 0; |
| 122 | }; |
| 123 | |
| 124 | } // namespace ceres |
| 125 | |
| 126 | #endif // CERES_PUBLIC_GRADIENT_PROBLEM_H_ |