blob: e23df76ba82a9b1c67494fb67908b7308e859355 [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28// Copyright 2007 Google Inc. All Rights Reserved.
29//
30// Authors: wjr@google.com (William Rucklidge),
31// keir@google.com (Keir Mierle),
32// dgossow@google.com (David Gossow)
33
34#ifndef CERES_PUBLIC_GRADIENT_CHECKER_H_
35#define CERES_PUBLIC_GRADIENT_CHECKER_H_
36
37#include <memory>
38#include <string>
39#include <vector>
40
41#include "ceres/cost_function.h"
42#include "ceres/dynamic_numeric_diff_cost_function.h"
43#include "ceres/internal/eigen.h"
44#include "ceres/internal/fixed_array.h"
45#include "ceres/local_parameterization.h"
46#include "glog/logging.h"
47
48namespace ceres {
49
50// GradientChecker compares the Jacobians returned by a cost function against
51// derivatives estimated using finite differencing.
52//
53// The condition enforced is that
54//
55// (J_actual(i, j) - J_numeric(i, j))
56// ------------------------------------ < relative_precision
57// max(J_actual(i, j), J_numeric(i, j))
58//
59// where J_actual(i, j) is the jacobian as computed by the supplied cost
60// function (by the user) multiplied by the local parameterization Jacobian
61// and J_numeric is the jacobian as computed by finite differences, multiplied
62// by the local parameterization Jacobian as well.
63//
64// How to use: Fill in an array of pointers to parameter blocks for your
65// CostFunction, and then call Probe(). Check that the return value is 'true'.
66class CERES_EXPORT GradientChecker {
67 public:
68 // This will not take ownership of the cost function or local
69 // parameterizations.
70 //
71 // function: The cost function to probe.
72 // local_parameterizations: A vector of local parameterizations for each
73 // parameter. May be NULL or contain NULL pointers to indicate that the
74 // respective parameter does not have a local parameterization.
75 // options: Options to use for numerical differentiation.
76 GradientChecker(
77 const CostFunction* function,
78 const std::vector<const LocalParameterization*>* local_parameterizations,
79 const NumericDiffOptions& options);
80
81 // Contains results from a call to Probe for later inspection.
82 struct CERES_EXPORT ProbeResults {
83 // The return value of the cost function.
84 bool return_value;
85
86 // Computed residual vector.
87 Vector residuals;
88
89 // The sizes of the Jacobians below are dictated by the cost function's
90 // parameter block size and residual block sizes. If a parameter block
91 // has a local parameterization associated with it, the size of the "local"
92 // Jacobian will be determined by the local parameterization dimension and
93 // residual block size, otherwise it will be identical to the regular
94 // Jacobian.
95
96 // Derivatives as computed by the cost function.
97 std::vector<Matrix> jacobians;
98
99 // Derivatives as computed by the cost function in local space.
100 std::vector<Matrix> local_jacobians;
101
102 // Derivatives as computed by numerical differentiation in local space.
103 std::vector<Matrix> numeric_jacobians;
104
105 // Derivatives as computed by numerical differentiation in local space.
106 std::vector<Matrix> local_numeric_jacobians;
107
108 // Contains the maximum relative error found in the local Jacobians.
109 double maximum_relative_error;
110
111 // If an error was detected, this will contain a detailed description of
112 // that error.
113 std::string error_log;
114 };
115
116 // Call the cost function, compute alternative Jacobians using finite
117 // differencing and compare results. If local parameterizations are given,
118 // the Jacobians will be multiplied by the local parameterization Jacobians
119 // before performing the check, which effectively means that all errors along
120 // the null space of the local parameterization will be ignored.
121 // Returns false if the Jacobians don't match, the cost function return false,
122 // or if the cost function returns different residual when called with a
123 // Jacobian output argument vs. calling it without. Otherwise returns true.
124 //
125 // parameters: The parameter values at which to probe.
126 // relative_precision: A threshold for the relative difference between the
127 // Jacobians. If the Jacobians differ by more than this amount, then the
128 // probe fails.
129 // results: On return, the Jacobians (and other information) will be stored
130 // here. May be NULL.
131 //
132 // Returns true if no problems are detected and the difference between the
133 // Jacobians is less than error_tolerance.
134 bool Probe(double const* const* parameters,
135 double relative_precision,
136 ProbeResults* results) const;
137
138 private:
139 GradientChecker() = delete;
140 GradientChecker(const GradientChecker&) = delete;
141 void operator=(const GradientChecker&) = delete;
142
143 std::vector<const LocalParameterization*> local_parameterizations_;
144 const CostFunction* function_;
145 std::unique_ptr<CostFunction> finite_diff_cost_function_;
146};
147
148} // namespace ceres
149
150#endif // CERES_PUBLIC_GRADIENT_CHECKER_H_