blob: 649e05dc9c8f17366ac422acea1388212bb6a6ec [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sergey.vfx@gmail.com (Sergey Sharybin)
30// mierle@gmail.com (Keir Mierle)
31// sameeragarwal@google.com (Sameer Agarwal)
32
33#ifndef CERES_PUBLIC_AUTODIFF_LOCAL_PARAMETERIZATION_H_
34#define CERES_PUBLIC_AUTODIFF_LOCAL_PARAMETERIZATION_H_
35
36#include <memory>
37#include "ceres/local_parameterization.h"
38#include "ceres/internal/autodiff.h"
39
40namespace ceres {
41
42// Create local parameterization with Jacobians computed via automatic
43// differentiation. For more information on local parameterizations,
44// see include/ceres/local_parameterization.h
45//
46// To get an auto differentiated local parameterization, you must define
47// a class with a templated operator() (a functor) that computes
48//
49// x_plus_delta = Plus(x, delta);
50//
51// the template parameter T. The autodiff framework substitutes appropriate
52// "Jet" objects for T in order to compute the derivative when necessary, but
53// this is hidden, and you should write the function as if T were a scalar type
54// (e.g. a double-precision floating point number).
55//
56// The function must write the computed value in the last argument (the only
57// non-const one) and return true to indicate success.
58//
59// For example, Quaternions have a three dimensional local
60// parameterization. It's plus operation can be implemented as (taken
61// from internal/ceres/auto_diff_local_parameterization_test.cc)
62//
63// struct QuaternionPlus {
64// template<typename T>
65// bool operator()(const T* x, const T* delta, T* x_plus_delta) const {
66// const T squared_norm_delta =
67// delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2];
68//
69// T q_delta[4];
70// if (squared_norm_delta > T(0.0)) {
71// T norm_delta = sqrt(squared_norm_delta);
72// const T sin_delta_by_delta = sin(norm_delta) / norm_delta;
73// q_delta[0] = cos(norm_delta);
74// q_delta[1] = sin_delta_by_delta * delta[0];
75// q_delta[2] = sin_delta_by_delta * delta[1];
76// q_delta[3] = sin_delta_by_delta * delta[2];
77// } else {
78// // We do not just use q_delta = [1,0,0,0] here because that is a
79// // constant and when used for automatic differentiation will
80// // lead to a zero derivative. Instead we take a first order
81// // approximation and evaluate it at zero.
82// q_delta[0] = T(1.0);
83// q_delta[1] = delta[0];
84// q_delta[2] = delta[1];
85// q_delta[3] = delta[2];
86// }
87//
88// QuaternionProduct(q_delta, x, x_plus_delta);
89// return true;
90// }
91// };
92//
93// Then given this struct, the auto differentiated local
94// parameterization can now be constructed as
95//
96// LocalParameterization* local_parameterization =
97// new AutoDiffLocalParameterization<QuaternionPlus, 4, 3>;
98// | |
99// Global Size ---------------+ |
100// Local Size -------------------+
101//
102// WARNING: Since the functor will get instantiated with different types for
103// T, you must to convert from other numeric types to T before mixing
104// computations with other variables of type T. In the example above, this is
105// seen where instead of using k_ directly, k_ is wrapped with T(k_).
106
107template <typename Functor, int kGlobalSize, int kLocalSize>
108class AutoDiffLocalParameterization : public LocalParameterization {
109 public:
110 AutoDiffLocalParameterization() :
111 functor_(new Functor()) {}
112
113 // Takes ownership of functor.
114 explicit AutoDiffLocalParameterization(Functor* functor) :
115 functor_(functor) {}
116
117 virtual ~AutoDiffLocalParameterization() {}
118 virtual bool Plus(const double* x,
119 const double* delta,
120 double* x_plus_delta) const {
121 return (*functor_)(x, delta, x_plus_delta);
122 }
123
124 virtual bool ComputeJacobian(const double* x, double* jacobian) const {
125 double zero_delta[kLocalSize];
126 for (int i = 0; i < kLocalSize; ++i) {
127 zero_delta[i] = 0.0;
128 }
129
130 double x_plus_delta[kGlobalSize];
131 for (int i = 0; i < kGlobalSize; ++i) {
132 x_plus_delta[i] = 0.0;
133 }
134
135 const double* parameter_ptrs[2] = {x, zero_delta};
136 double* jacobian_ptrs[2] = { NULL, jacobian };
137 return internal::AutoDifferentiate<
138 internal::StaticParameterDims<kGlobalSize, kLocalSize>>(
139 *functor_, parameter_ptrs, kGlobalSize, x_plus_delta, jacobian_ptrs);
140 }
141
142 virtual int GlobalSize() const { return kGlobalSize; }
143 virtual int LocalSize() const { return kLocalSize; }
144
145 private:
146 std::unique_ptr<Functor> functor_;
147};
148
149} // namespace ceres
150
151#endif // CERES_PUBLIC_AUTODIFF_LOCAL_PARAMETERIZATION_H_