Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame^] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | // |
| 31 | // Create CostFunctions as needed by the least squares framework, with |
| 32 | // Jacobians computed via automatic differentiation. For more |
| 33 | // information on automatic differentiation, see the wikipedia article |
| 34 | // at http://en.wikipedia.org/wiki/Automatic_differentiation |
| 35 | // |
| 36 | // To get an auto differentiated cost function, you must define a class with a |
| 37 | // templated operator() (a functor) that computes the cost function in terms of |
| 38 | // the template parameter T. The autodiff framework substitutes appropriate |
| 39 | // "jet" objects for T in order to compute the derivative when necessary, but |
| 40 | // this is hidden, and you should write the function as if T were a scalar type |
| 41 | // (e.g. a double-precision floating point number). |
| 42 | // |
| 43 | // The function must write the computed value in the last argument |
| 44 | // (the only non-const one) and return true to indicate |
| 45 | // success. Please see cost_function.h for details on how the return |
| 46 | // value maybe used to impose simple constraints on the parameter |
| 47 | // block. |
| 48 | // |
| 49 | // For example, consider a scalar error e = k - x'y, where both x and y are |
| 50 | // two-dimensional column vector parameters, the prime sign indicates |
| 51 | // transposition, and k is a constant. The form of this error, which is the |
| 52 | // difference between a constant and an expression, is a common pattern in least |
| 53 | // squares problems. For example, the value x'y might be the model expectation |
| 54 | // for a series of measurements, where there is an instance of the cost function |
| 55 | // for each measurement k. |
| 56 | // |
| 57 | // The actual cost added to the total problem is e^2, or (k - x'k)^2; however, |
| 58 | // the squaring is implicitly done by the optimization framework. |
| 59 | // |
| 60 | // To write an auto-differentiable cost function for the above model, first |
| 61 | // define the object |
| 62 | // |
| 63 | // class MyScalarCostFunctor { |
| 64 | // MyScalarCostFunctor(double k): k_(k) {} |
| 65 | // |
| 66 | // template <typename T> |
| 67 | // bool operator()(const T* const x , const T* const y, T* e) const { |
| 68 | // e[0] = T(k_) - x[0] * y[0] + x[1] * y[1]; |
| 69 | // return true; |
| 70 | // } |
| 71 | // |
| 72 | // private: |
| 73 | // double k_; |
| 74 | // }; |
| 75 | // |
| 76 | // Note that in the declaration of operator() the input parameters x and y come |
| 77 | // first, and are passed as const pointers to arrays of T. If there were three |
| 78 | // input parameters, then the third input parameter would come after y. The |
| 79 | // output is always the last parameter, and is also a pointer to an array. In |
| 80 | // the example above, e is a scalar, so only e[0] is set. |
| 81 | // |
| 82 | // Then given this class definition, the auto differentiated cost function for |
| 83 | // it can be constructed as follows. |
| 84 | // |
| 85 | // CostFunction* cost_function |
| 86 | // = new AutoDiffCostFunction<MyScalarCostFunctor, 1, 2, 2>( |
| 87 | // new MyScalarCostFunctor(1.0)); ^ ^ ^ |
| 88 | // | | | |
| 89 | // Dimension of residual -----+ | | |
| 90 | // Dimension of x ---------------+ | |
| 91 | // Dimension of y ------------------+ |
| 92 | // |
| 93 | // In this example, there is usually an instance for each measurement of k. |
| 94 | // |
| 95 | // In the instantiation above, the template parameters following |
| 96 | // "MyScalarCostFunctor", "1, 2, 2", describe the functor as computing a |
| 97 | // 1-dimensional output from two arguments, both 2-dimensional. |
| 98 | // |
| 99 | // AutoDiffCostFunction also supports cost functions with a |
| 100 | // runtime-determined number of residuals. For example: |
| 101 | // |
| 102 | // CostFunction* cost_function |
| 103 | // = new AutoDiffCostFunction<MyScalarCostFunctor, DYNAMIC, 2, 2>( |
| 104 | // new CostFunctorWithDynamicNumResiduals(1.0), ^ ^ ^ |
| 105 | // runtime_number_of_residuals); <----+ | | | |
| 106 | // | | | | |
| 107 | // | | | | |
| 108 | // Actual number of residuals ------+ | | | |
| 109 | // Indicate dynamic number of residuals --------+ | | |
| 110 | // Dimension of x ------------------------------------+ | |
| 111 | // Dimension of y ---------------------------------------+ |
| 112 | // |
| 113 | // WARNING #1: Since the functor will get instantiated with different types for |
| 114 | // T, you must convert from other numeric types to T before mixing |
| 115 | // computations with other variables of type T. In the example above, this is |
| 116 | // seen where instead of using k_ directly, k_ is wrapped with T(k_). |
| 117 | // |
| 118 | // WARNING #2: A common beginner's error when first using autodiff cost |
| 119 | // functions is to get the sizing wrong. In particular, there is a tendency to |
| 120 | // set the template parameters to (dimension of residual, number of parameters) |
| 121 | // instead of passing a dimension parameter for *every parameter*. In the |
| 122 | // example above, that would be <MyScalarCostFunctor, 1, 2>, which is missing |
| 123 | // the last '2' argument. Please be careful when setting the size parameters. |
| 124 | |
| 125 | #ifndef CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_ |
| 126 | #define CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_ |
| 127 | |
| 128 | #include <memory> |
| 129 | #include "ceres/internal/autodiff.h" |
| 130 | #include "ceres/sized_cost_function.h" |
| 131 | #include "ceres/types.h" |
| 132 | #include "glog/logging.h" |
| 133 | |
| 134 | namespace ceres { |
| 135 | |
| 136 | // A cost function which computes the derivative of the cost with respect to |
| 137 | // the parameters (a.k.a. the jacobian) using an auto differentiation framework. |
| 138 | // The first template argument is the functor object, described in the header |
| 139 | // comment. The second argument is the dimension of the residual (or |
| 140 | // ceres::DYNAMIC to indicate it will be set at runtime), and subsequent |
| 141 | // arguments describe the size of the Nth parameter, one per parameter. |
| 142 | // |
| 143 | // The constructors take ownership of the cost functor. |
| 144 | // |
| 145 | // If the number of residuals (argument kNumResiduals below) is |
| 146 | // ceres::DYNAMIC, then the two-argument constructor must be used. The |
| 147 | // second constructor takes a number of residuals (in addition to the |
| 148 | // templated number of residuals). This allows for varying the number |
| 149 | // of residuals for a single autodiff cost function at runtime. |
| 150 | template <typename CostFunctor, |
| 151 | int kNumResiduals, // Number of residuals, or ceres::DYNAMIC. |
| 152 | int... Ns> // Number of parameters in each parameter block. |
| 153 | class AutoDiffCostFunction : public SizedCostFunction<kNumResiduals, Ns...> { |
| 154 | public: |
| 155 | // Takes ownership of functor. Uses the template-provided value for the |
| 156 | // number of residuals ("kNumResiduals"). |
| 157 | explicit AutoDiffCostFunction(CostFunctor* functor) |
| 158 | : functor_(functor) { |
| 159 | static_assert(kNumResiduals != DYNAMIC, |
| 160 | "Can't run the fixed-size constructor if the number of " |
| 161 | "residuals is set to ceres::DYNAMIC."); |
| 162 | } |
| 163 | |
| 164 | // Takes ownership of functor. Ignores the template-provided |
| 165 | // kNumResiduals in favor of the "num_residuals" argument provided. |
| 166 | // |
| 167 | // This allows for having autodiff cost functions which return varying |
| 168 | // numbers of residuals at runtime. |
| 169 | AutoDiffCostFunction(CostFunctor* functor, int num_residuals) |
| 170 | : functor_(functor) { |
| 171 | static_assert(kNumResiduals == DYNAMIC, |
| 172 | "Can't run the dynamic-size constructor if the number of " |
| 173 | "residuals is not ceres::DYNAMIC."); |
| 174 | SizedCostFunction<kNumResiduals, Ns...>::set_num_residuals(num_residuals); |
| 175 | } |
| 176 | |
| 177 | virtual ~AutoDiffCostFunction() {} |
| 178 | |
| 179 | // Implementation details follow; clients of the autodiff cost function should |
| 180 | // not have to examine below here. |
| 181 | // |
| 182 | // To handle variadic cost functions, some template magic is needed. It's |
| 183 | // mostly hidden inside autodiff.h. |
| 184 | virtual bool Evaluate(double const* const* parameters, |
| 185 | double* residuals, |
| 186 | double** jacobians) const { |
| 187 | using ParameterDims = |
| 188 | typename SizedCostFunction<kNumResiduals, Ns...>::ParameterDims; |
| 189 | |
| 190 | if (!jacobians) { |
| 191 | return internal::VariadicEvaluate<ParameterDims>(*functor_, |
| 192 | parameters, |
| 193 | residuals); |
| 194 | } |
| 195 | return internal::AutoDifferentiate<ParameterDims>( |
| 196 | *functor_, |
| 197 | parameters, |
| 198 | SizedCostFunction<kNumResiduals, Ns...>::num_residuals(), |
| 199 | residuals, |
| 200 | jacobians); |
| 201 | } |
| 202 | |
| 203 | private: |
| 204 | std::unique_ptr<CostFunctor> functor_; |
| 205 | }; |
| 206 | |
| 207 | } // namespace ceres |
| 208 | |
| 209 | #endif // CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_ |