blob: db3f6af6dcd40d797b80c96837bf29303b37eee4 [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30//
31// Create CostFunctions as needed by the least squares framework, with
32// Jacobians computed via automatic differentiation. For more
33// information on automatic differentiation, see the wikipedia article
34// at http://en.wikipedia.org/wiki/Automatic_differentiation
35//
36// To get an auto differentiated cost function, you must define a class with a
37// templated operator() (a functor) that computes the cost function in terms of
38// the template parameter T. The autodiff framework substitutes appropriate
39// "jet" objects for T in order to compute the derivative when necessary, but
40// this is hidden, and you should write the function as if T were a scalar type
41// (e.g. a double-precision floating point number).
42//
43// The function must write the computed value in the last argument
44// (the only non-const one) and return true to indicate
45// success. Please see cost_function.h for details on how the return
46// value maybe used to impose simple constraints on the parameter
47// block.
48//
49// For example, consider a scalar error e = k - x'y, where both x and y are
50// two-dimensional column vector parameters, the prime sign indicates
51// transposition, and k is a constant. The form of this error, which is the
52// difference between a constant and an expression, is a common pattern in least
53// squares problems. For example, the value x'y might be the model expectation
54// for a series of measurements, where there is an instance of the cost function
55// for each measurement k.
56//
57// The actual cost added to the total problem is e^2, or (k - x'k)^2; however,
58// the squaring is implicitly done by the optimization framework.
59//
60// To write an auto-differentiable cost function for the above model, first
61// define the object
62//
63// class MyScalarCostFunctor {
64// MyScalarCostFunctor(double k): k_(k) {}
65//
66// template <typename T>
67// bool operator()(const T* const x , const T* const y, T* e) const {
68// e[0] = T(k_) - x[0] * y[0] + x[1] * y[1];
69// return true;
70// }
71//
72// private:
73// double k_;
74// };
75//
76// Note that in the declaration of operator() the input parameters x and y come
77// first, and are passed as const pointers to arrays of T. If there were three
78// input parameters, then the third input parameter would come after y. The
79// output is always the last parameter, and is also a pointer to an array. In
80// the example above, e is a scalar, so only e[0] is set.
81//
82// Then given this class definition, the auto differentiated cost function for
83// it can be constructed as follows.
84//
85// CostFunction* cost_function
86// = new AutoDiffCostFunction<MyScalarCostFunctor, 1, 2, 2>(
87// new MyScalarCostFunctor(1.0)); ^ ^ ^
88// | | |
89// Dimension of residual -----+ | |
90// Dimension of x ---------------+ |
91// Dimension of y ------------------+
92//
93// In this example, there is usually an instance for each measurement of k.
94//
95// In the instantiation above, the template parameters following
96// "MyScalarCostFunctor", "1, 2, 2", describe the functor as computing a
97// 1-dimensional output from two arguments, both 2-dimensional.
98//
99// AutoDiffCostFunction also supports cost functions with a
100// runtime-determined number of residuals. For example:
101//
102// CostFunction* cost_function
103// = new AutoDiffCostFunction<MyScalarCostFunctor, DYNAMIC, 2, 2>(
104// new CostFunctorWithDynamicNumResiduals(1.0), ^ ^ ^
105// runtime_number_of_residuals); <----+ | | |
106// | | | |
107// | | | |
108// Actual number of residuals ------+ | | |
109// Indicate dynamic number of residuals --------+ | |
110// Dimension of x ------------------------------------+ |
111// Dimension of y ---------------------------------------+
112//
113// WARNING #1: Since the functor will get instantiated with different types for
114// T, you must convert from other numeric types to T before mixing
115// computations with other variables of type T. In the example above, this is
116// seen where instead of using k_ directly, k_ is wrapped with T(k_).
117//
118// WARNING #2: A common beginner's error when first using autodiff cost
119// functions is to get the sizing wrong. In particular, there is a tendency to
120// set the template parameters to (dimension of residual, number of parameters)
121// instead of passing a dimension parameter for *every parameter*. In the
122// example above, that would be <MyScalarCostFunctor, 1, 2>, which is missing
123// the last '2' argument. Please be careful when setting the size parameters.
124
125#ifndef CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_
126#define CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_
127
128#include <memory>
129#include "ceres/internal/autodiff.h"
130#include "ceres/sized_cost_function.h"
131#include "ceres/types.h"
132#include "glog/logging.h"
133
134namespace ceres {
135
136// A cost function which computes the derivative of the cost with respect to
137// the parameters (a.k.a. the jacobian) using an auto differentiation framework.
138// The first template argument is the functor object, described in the header
139// comment. The second argument is the dimension of the residual (or
140// ceres::DYNAMIC to indicate it will be set at runtime), and subsequent
141// arguments describe the size of the Nth parameter, one per parameter.
142//
143// The constructors take ownership of the cost functor.
144//
145// If the number of residuals (argument kNumResiduals below) is
146// ceres::DYNAMIC, then the two-argument constructor must be used. The
147// second constructor takes a number of residuals (in addition to the
148// templated number of residuals). This allows for varying the number
149// of residuals for a single autodiff cost function at runtime.
150template <typename CostFunctor,
151 int kNumResiduals, // Number of residuals, or ceres::DYNAMIC.
152 int... Ns> // Number of parameters in each parameter block.
153class AutoDiffCostFunction : public SizedCostFunction<kNumResiduals, Ns...> {
154 public:
155 // Takes ownership of functor. Uses the template-provided value for the
156 // number of residuals ("kNumResiduals").
157 explicit AutoDiffCostFunction(CostFunctor* functor)
158 : functor_(functor) {
159 static_assert(kNumResiduals != DYNAMIC,
160 "Can't run the fixed-size constructor if the number of "
161 "residuals is set to ceres::DYNAMIC.");
162 }
163
164 // Takes ownership of functor. Ignores the template-provided
165 // kNumResiduals in favor of the "num_residuals" argument provided.
166 //
167 // This allows for having autodiff cost functions which return varying
168 // numbers of residuals at runtime.
169 AutoDiffCostFunction(CostFunctor* functor, int num_residuals)
170 : functor_(functor) {
171 static_assert(kNumResiduals == DYNAMIC,
172 "Can't run the dynamic-size constructor if the number of "
173 "residuals is not ceres::DYNAMIC.");
174 SizedCostFunction<kNumResiduals, Ns...>::set_num_residuals(num_residuals);
175 }
176
177 virtual ~AutoDiffCostFunction() {}
178
179 // Implementation details follow; clients of the autodiff cost function should
180 // not have to examine below here.
181 //
182 // To handle variadic cost functions, some template magic is needed. It's
183 // mostly hidden inside autodiff.h.
184 virtual bool Evaluate(double const* const* parameters,
185 double* residuals,
186 double** jacobians) const {
187 using ParameterDims =
188 typename SizedCostFunction<kNumResiduals, Ns...>::ParameterDims;
189
190 if (!jacobians) {
191 return internal::VariadicEvaluate<ParameterDims>(*functor_,
192 parameters,
193 residuals);
194 }
195 return internal::AutoDifferentiate<ParameterDims>(
196 *functor_,
197 parameters,
198 SizedCostFunction<kNumResiduals, Ns...>::num_residuals(),
199 residuals,
200 jacobians);
201 }
202
203 private:
204 std::unique_ptr<CostFunctor> functor_;
205};
206
207} // namespace ceres
208
209#endif // CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_