Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame^] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | // |
| 31 | // Templated struct implementing the camera model and residual |
| 32 | // computation for bundle adjustment used by Noah Snavely's Bundler |
| 33 | // SfM system. This is also the camera model/residual for the bundle |
| 34 | // adjustment problems in the BAL dataset. It is templated so that we |
| 35 | // can use Ceres's automatic differentiation to compute analytic |
| 36 | // jacobians. |
| 37 | // |
| 38 | // For details see: http://phototour.cs.washington.edu/bundler/ |
| 39 | // and http://grail.cs.washington.edu/projects/bal/ |
| 40 | |
| 41 | #ifndef CERES_EXAMPLES_SNAVELY_REPROJECTION_ERROR_H_ |
| 42 | #define CERES_EXAMPLES_SNAVELY_REPROJECTION_ERROR_H_ |
| 43 | |
| 44 | #include "ceres/rotation.h" |
| 45 | |
| 46 | namespace ceres { |
| 47 | namespace examples { |
| 48 | |
| 49 | // Templated pinhole camera model for used with Ceres. The camera is |
| 50 | // parameterized using 9 parameters: 3 for rotation, 3 for translation, 1 for |
| 51 | // focal length and 2 for radial distortion. The principal point is not modeled |
| 52 | // (i.e. it is assumed be located at the image center). |
| 53 | struct SnavelyReprojectionError { |
| 54 | SnavelyReprojectionError(double observed_x, double observed_y) |
| 55 | : observed_x(observed_x), observed_y(observed_y) {} |
| 56 | |
| 57 | template <typename T> |
| 58 | bool operator()(const T* const camera, |
| 59 | const T* const point, |
| 60 | T* residuals) const { |
| 61 | // camera[0,1,2] are the angle-axis rotation. |
| 62 | T p[3]; |
| 63 | AngleAxisRotatePoint(camera, point, p); |
| 64 | |
| 65 | // camera[3,4,5] are the translation. |
| 66 | p[0] += camera[3]; |
| 67 | p[1] += camera[4]; |
| 68 | p[2] += camera[5]; |
| 69 | |
| 70 | // Compute the center of distortion. The sign change comes from |
| 71 | // the camera model that Noah Snavely's Bundler assumes, whereby |
| 72 | // the camera coordinate system has a negative z axis. |
| 73 | const T xp = - p[0] / p[2]; |
| 74 | const T yp = - p[1] / p[2]; |
| 75 | |
| 76 | // Apply second and fourth order radial distortion. |
| 77 | const T& l1 = camera[7]; |
| 78 | const T& l2 = camera[8]; |
| 79 | const T r2 = xp*xp + yp*yp; |
| 80 | const T distortion = 1.0 + r2 * (l1 + l2 * r2); |
| 81 | |
| 82 | |
| 83 | // Compute final projected point position. |
| 84 | const T& focal = camera[6]; |
| 85 | const T predicted_x = focal * distortion * xp; |
| 86 | const T predicted_y = focal * distortion * yp; |
| 87 | |
| 88 | // The error is the difference between the predicted and observed position. |
| 89 | residuals[0] = predicted_x - observed_x; |
| 90 | residuals[1] = predicted_y - observed_y; |
| 91 | |
| 92 | return true; |
| 93 | } |
| 94 | |
| 95 | // Factory to hide the construction of the CostFunction object from |
| 96 | // the client code. |
| 97 | static ceres::CostFunction* Create(const double observed_x, |
| 98 | const double observed_y) { |
| 99 | return (new ceres::AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>( |
| 100 | new SnavelyReprojectionError(observed_x, observed_y))); |
| 101 | } |
| 102 | |
| 103 | double observed_x; |
| 104 | double observed_y; |
| 105 | }; |
| 106 | |
| 107 | // Templated pinhole camera model for used with Ceres. The camera is |
| 108 | // parameterized using 10 parameters. 4 for rotation, 3 for |
| 109 | // translation, 1 for focal length and 2 for radial distortion. The |
| 110 | // principal point is not modeled (i.e. it is assumed be located at |
| 111 | // the image center). |
| 112 | struct SnavelyReprojectionErrorWithQuaternions { |
| 113 | // (u, v): the position of the observation with respect to the image |
| 114 | // center point. |
| 115 | SnavelyReprojectionErrorWithQuaternions(double observed_x, double observed_y) |
| 116 | : observed_x(observed_x), observed_y(observed_y) {} |
| 117 | |
| 118 | template <typename T> |
| 119 | bool operator()(const T* const camera, |
| 120 | const T* const point, |
| 121 | T* residuals) const { |
| 122 | // camera[0,1,2,3] is are the rotation of the camera as a quaternion. |
| 123 | // |
| 124 | // We use QuaternionRotatePoint as it does not assume that the |
| 125 | // quaternion is normalized, since one of the ways to run the |
| 126 | // bundle adjuster is to let Ceres optimize all 4 quaternion |
| 127 | // parameters without a local parameterization. |
| 128 | T p[3]; |
| 129 | QuaternionRotatePoint(camera, point, p); |
| 130 | |
| 131 | p[0] += camera[4]; |
| 132 | p[1] += camera[5]; |
| 133 | p[2] += camera[6]; |
| 134 | |
| 135 | // Compute the center of distortion. The sign change comes from |
| 136 | // the camera model that Noah Snavely's Bundler assumes, whereby |
| 137 | // the camera coordinate system has a negative z axis. |
| 138 | const T xp = - p[0] / p[2]; |
| 139 | const T yp = - p[1] / p[2]; |
| 140 | |
| 141 | // Apply second and fourth order radial distortion. |
| 142 | const T& l1 = camera[8]; |
| 143 | const T& l2 = camera[9]; |
| 144 | |
| 145 | const T r2 = xp*xp + yp*yp; |
| 146 | const T distortion = 1.0 + r2 * (l1 + l2 * r2); |
| 147 | |
| 148 | // Compute final projected point position. |
| 149 | const T& focal = camera[7]; |
| 150 | const T predicted_x = focal * distortion * xp; |
| 151 | const T predicted_y = focal * distortion * yp; |
| 152 | |
| 153 | // The error is the difference between the predicted and observed position. |
| 154 | residuals[0] = predicted_x - observed_x; |
| 155 | residuals[1] = predicted_y - observed_y; |
| 156 | |
| 157 | return true; |
| 158 | } |
| 159 | |
| 160 | // Factory to hide the construction of the CostFunction object from |
| 161 | // the client code. |
| 162 | static ceres::CostFunction* Create(const double observed_x, |
| 163 | const double observed_y) { |
| 164 | return (new ceres::AutoDiffCostFunction< |
| 165 | SnavelyReprojectionErrorWithQuaternions, 2, 10, 3>( |
| 166 | new SnavelyReprojectionErrorWithQuaternions(observed_x, |
| 167 | observed_y))); |
| 168 | } |
| 169 | |
| 170 | double observed_x; |
| 171 | double observed_y; |
| 172 | }; |
| 173 | |
| 174 | } // namespace examples |
| 175 | } // namespace ceres |
| 176 | |
| 177 | #endif // CERES_EXAMPLES_SNAVELY_REPROJECTION_ERROR_H_ |