Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame^] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: joydeepb@ri.cmu.edu (Joydeep Biswas) |
| 30 | // |
| 31 | // This example demonstrates how to use the DynamicAutoDiffCostFunction |
| 32 | // variant of CostFunction. The DynamicAutoDiffCostFunction is meant to |
| 33 | // be used in cases where the number of parameter blocks or the sizes are not |
| 34 | // known at compile time. |
| 35 | // |
| 36 | // This example simulates a robot traversing down a 1-dimension hallway with |
| 37 | // noise odometry readings and noisy range readings of the end of the hallway. |
| 38 | // By fusing the noisy odometry and sensor readings this example demonstrates |
| 39 | // how to compute the maximum likelihood estimate (MLE) of the robot's pose at |
| 40 | // each timestep. |
| 41 | // |
| 42 | // The robot starts at the origin, and it is travels to the end of a corridor of |
| 43 | // fixed length specified by the "--corridor_length" flag. It executes a series |
| 44 | // of motion commands to move forward a fixed length, specified by the |
| 45 | // "--pose_separation" flag, at which pose it receives relative odometry |
| 46 | // measurements as well as a range reading of the distance to the end of the |
| 47 | // hallway. The odometry readings are drawn with Gaussian noise and standard |
| 48 | // deviation specified by the "--odometry_stddev" flag, and the range readings |
| 49 | // similarly with standard deviation specified by the "--range-stddev" flag. |
| 50 | // |
| 51 | // There are two types of residuals in this problem: |
| 52 | // 1) The OdometryConstraint residual, that accounts for the odometry readings |
| 53 | // between successive pose estimatess of the robot. |
| 54 | // 2) The RangeConstraint residual, that accounts for the errors in the observed |
| 55 | // range readings from each pose. |
| 56 | // |
| 57 | // The OdometryConstraint residual is modeled as an AutoDiffCostFunction with |
| 58 | // a fixed parameter block size of 1, which is the relative odometry being |
| 59 | // solved for, between a pair of successive poses of the robot. Differences |
| 60 | // between observed and computed relative odometry values are penalized weighted |
| 61 | // by the known standard deviation of the odometry readings. |
| 62 | // |
| 63 | // The RangeConstraint residual is modeled as a DynamicAutoDiffCostFunction |
| 64 | // which sums up the relative odometry estimates to compute the estimated |
| 65 | // global pose of the robot, and then computes the expected range reading. |
| 66 | // Differences between the observed and expected range readings are then |
| 67 | // penalized weighted by the standard deviation of readings of the sensor. |
| 68 | // Since the number of poses of the robot is not known at compile time, this |
| 69 | // cost function is implemented as a DynamicAutoDiffCostFunction. |
| 70 | // |
| 71 | // The outputs of the example are the initial values of the odometry and range |
| 72 | // readings, and the range and odometry errors for every pose of the robot. |
| 73 | // After computing the MLE, the computed poses and corrected odometry values |
| 74 | // are printed out, along with the corresponding range and odometry errors. Note |
| 75 | // that as an MLE of a noisy system the errors will not be reduced to zero, but |
| 76 | // the odometry estimates will be updated to maximize the joint likelihood of |
| 77 | // all odometry and range readings of the robot. |
| 78 | // |
| 79 | // Mathematical Formulation |
| 80 | // ====================================================== |
| 81 | // |
| 82 | // Let p_0, .., p_N be (N+1) robot poses, where the robot moves down the |
| 83 | // corridor starting from p_0 and ending at p_N. We assume that p_0 is the |
| 84 | // origin of the coordinate system. |
| 85 | // Odometry u_i is the observed relative odometry between pose p_(i-1) and p_i, |
| 86 | // and range reading y_i is the range reading of the end of the corridor from |
| 87 | // pose p_i. Both odometry as well as range readings are noisy, but we wish to |
| 88 | // compute the maximum likelihood estimate (MLE) of corrected odometry values |
| 89 | // u*_0 to u*_(N-1), such that the Belief is optimized: |
| 90 | // |
| 91 | // Belief(u*_(0:N-1) | u_(0:N-1), y_(0:N-1)) 1. |
| 92 | // = P(u*_(0:N-1) | u_(0:N-1), y_(0:N-1)) 2. |
| 93 | // \propto P(y_(0:N-1) | u*_(0:N-1), u_(0:N-1)) P(u*_(0:N-1) | u_(0:N-1)) 3. |
| 94 | // = \prod_i{ P(y_i | u*_(0:i)) P(u*_i | u_i) } 4. |
| 95 | // |
| 96 | // Here, the subscript "(0:i)" is used as shorthand to indicate entries from all |
| 97 | // timesteps 0 to i for that variable, both inclusive. |
| 98 | // |
| 99 | // Bayes' rule is used to derive eq. 3 from 2, and the independence of |
| 100 | // odometry observations and range readings is expolited to derive 4 from 3. |
| 101 | // |
| 102 | // Thus, the Belief, up to scale, is factored as a product of a number of |
| 103 | // terms, two for each pose, where for each pose term there is one term for the |
| 104 | // range reading, P(y_i | u*_(0:i) and one term for the odometry reading, |
| 105 | // P(u*_i | u_i) . Note that the term for the range reading is dependent on all |
| 106 | // odometry values u*_(0:i), while the odometry term, P(u*_i | u_i) depends only |
| 107 | // on a single value, u_i. Both the range reading as well as odoemtry |
| 108 | // probability terms are modeled as the Normal distribution, and have the form: |
| 109 | // |
| 110 | // p(x) \propto \exp{-((x - x_mean) / x_stddev)^2} |
| 111 | // |
| 112 | // where x refers to either the MLE odometry u* or range reading y, and x_mean |
| 113 | // is the corresponding mean value, u for the odometry terms, and y_expected, |
| 114 | // the expected range reading based on all the previous odometry terms. |
| 115 | // The MLE is thus found by finding those values x* which minimize: |
| 116 | // |
| 117 | // x* = \arg\min{((x - x_mean) / x_stddev)^2} |
| 118 | // |
| 119 | // which is in the nonlinear least-square form, suited to being solved by Ceres. |
| 120 | // The non-linear component arise from the computation of x_mean. The residuals |
| 121 | // ((x - x_mean) / x_stddev) for the residuals that Ceres will optimize. As |
| 122 | // mentioned earlier, the odometry term for each pose depends only on one |
| 123 | // variable, and will be computed by an AutoDiffCostFunction, while the term |
| 124 | // for the range reading will depend on all previous odometry observations, and |
| 125 | // will be computed by a DynamicAutoDiffCostFunction since the number of |
| 126 | // odoemtry observations will only be known at run time. |
| 127 | |
| 128 | #include <cstdio> |
| 129 | #include <math.h> |
| 130 | #include <vector> |
| 131 | |
| 132 | #include "ceres/ceres.h" |
| 133 | #include "ceres/dynamic_autodiff_cost_function.h" |
| 134 | #include "gflags/gflags.h" |
| 135 | #include "glog/logging.h" |
| 136 | #include "random.h" |
| 137 | |
| 138 | using ceres::AutoDiffCostFunction; |
| 139 | using ceres::DynamicAutoDiffCostFunction; |
| 140 | using ceres::CauchyLoss; |
| 141 | using ceres::CostFunction; |
| 142 | using ceres::LossFunction; |
| 143 | using ceres::Problem; |
| 144 | using ceres::Solve; |
| 145 | using ceres::Solver; |
| 146 | using ceres::examples::RandNormal; |
| 147 | using std::min; |
| 148 | using std::vector; |
| 149 | |
| 150 | DEFINE_double(corridor_length, 30.0, "Length of the corridor that the robot is " |
| 151 | "travelling down."); |
| 152 | |
| 153 | DEFINE_double(pose_separation, 0.5, "The distance that the robot traverses " |
| 154 | "between successive odometry updates."); |
| 155 | |
| 156 | DEFINE_double(odometry_stddev, 0.1, "The standard deviation of " |
| 157 | "odometry error of the robot."); |
| 158 | |
| 159 | DEFINE_double(range_stddev, 0.01, "The standard deviation of range readings of " |
| 160 | "the robot."); |
| 161 | |
| 162 | // The stride length of the dynamic_autodiff_cost_function evaluator. |
| 163 | static const int kStride = 10; |
| 164 | |
| 165 | struct OdometryConstraint { |
| 166 | typedef AutoDiffCostFunction<OdometryConstraint, 1, 1> OdometryCostFunction; |
| 167 | |
| 168 | OdometryConstraint(double odometry_mean, double odometry_stddev) : |
| 169 | odometry_mean(odometry_mean), odometry_stddev(odometry_stddev) {} |
| 170 | |
| 171 | template <typename T> |
| 172 | bool operator()(const T* const odometry, T* residual) const { |
| 173 | *residual = (*odometry - odometry_mean) / odometry_stddev; |
| 174 | return true; |
| 175 | } |
| 176 | |
| 177 | static OdometryCostFunction* Create(const double odometry_value) { |
| 178 | return new OdometryCostFunction( |
| 179 | new OdometryConstraint(odometry_value, FLAGS_odometry_stddev)); |
| 180 | } |
| 181 | |
| 182 | const double odometry_mean; |
| 183 | const double odometry_stddev; |
| 184 | }; |
| 185 | |
| 186 | struct RangeConstraint { |
| 187 | typedef DynamicAutoDiffCostFunction<RangeConstraint, kStride> |
| 188 | RangeCostFunction; |
| 189 | |
| 190 | RangeConstraint( |
| 191 | int pose_index, |
| 192 | double range_reading, |
| 193 | double range_stddev, |
| 194 | double corridor_length) : |
| 195 | pose_index(pose_index), range_reading(range_reading), |
| 196 | range_stddev(range_stddev), corridor_length(corridor_length) {} |
| 197 | |
| 198 | template <typename T> |
| 199 | bool operator()(T const* const* relative_poses, T* residuals) const { |
| 200 | T global_pose(0); |
| 201 | for (int i = 0; i <= pose_index; ++i) { |
| 202 | global_pose += relative_poses[i][0]; |
| 203 | } |
| 204 | residuals[0] = (global_pose + range_reading - corridor_length) / |
| 205 | range_stddev; |
| 206 | return true; |
| 207 | } |
| 208 | |
| 209 | // Factory method to create a CostFunction from a RangeConstraint to |
| 210 | // conveniently add to a ceres problem. |
| 211 | static RangeCostFunction* Create(const int pose_index, |
| 212 | const double range_reading, |
| 213 | vector<double>* odometry_values, |
| 214 | vector<double*>* parameter_blocks) { |
| 215 | RangeConstraint* constraint = new RangeConstraint( |
| 216 | pose_index, range_reading, FLAGS_range_stddev, FLAGS_corridor_length); |
| 217 | RangeCostFunction* cost_function = new RangeCostFunction(constraint); |
| 218 | // Add all the parameter blocks that affect this constraint. |
| 219 | parameter_blocks->clear(); |
| 220 | for (int i = 0; i <= pose_index; ++i) { |
| 221 | parameter_blocks->push_back(&((*odometry_values)[i])); |
| 222 | cost_function->AddParameterBlock(1); |
| 223 | } |
| 224 | cost_function->SetNumResiduals(1); |
| 225 | return (cost_function); |
| 226 | } |
| 227 | |
| 228 | const int pose_index; |
| 229 | const double range_reading; |
| 230 | const double range_stddev; |
| 231 | const double corridor_length; |
| 232 | }; |
| 233 | |
| 234 | void SimulateRobot(vector<double>* odometry_values, |
| 235 | vector<double>* range_readings) { |
| 236 | const int num_steps = static_cast<int>( |
| 237 | ceil(FLAGS_corridor_length / FLAGS_pose_separation)); |
| 238 | |
| 239 | // The robot starts out at the origin. |
| 240 | double robot_location = 0.0; |
| 241 | for (int i = 0; i < num_steps; ++i) { |
| 242 | const double actual_odometry_value = min( |
| 243 | FLAGS_pose_separation, FLAGS_corridor_length - robot_location); |
| 244 | robot_location += actual_odometry_value; |
| 245 | const double actual_range = FLAGS_corridor_length - robot_location; |
| 246 | const double observed_odometry = |
| 247 | RandNormal() * FLAGS_odometry_stddev + actual_odometry_value; |
| 248 | const double observed_range = |
| 249 | RandNormal() * FLAGS_range_stddev + actual_range; |
| 250 | odometry_values->push_back(observed_odometry); |
| 251 | range_readings->push_back(observed_range); |
| 252 | } |
| 253 | } |
| 254 | |
| 255 | void PrintState(const vector<double>& odometry_readings, |
| 256 | const vector<double>& range_readings) { |
| 257 | CHECK_EQ(odometry_readings.size(), range_readings.size()); |
| 258 | double robot_location = 0.0; |
| 259 | printf("pose: location odom range r.error o.error\n"); |
| 260 | for (int i = 0; i < odometry_readings.size(); ++i) { |
| 261 | robot_location += odometry_readings[i]; |
| 262 | const double range_error = |
| 263 | robot_location + range_readings[i] - FLAGS_corridor_length; |
| 264 | const double odometry_error = |
| 265 | FLAGS_pose_separation - odometry_readings[i]; |
| 266 | printf("%4d: %8.3f %8.3f %8.3f %8.3f %8.3f\n", |
| 267 | static_cast<int>(i), robot_location, odometry_readings[i], |
| 268 | range_readings[i], range_error, odometry_error); |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | int main(int argc, char** argv) { |
| 273 | google::InitGoogleLogging(argv[0]); |
| 274 | CERES_GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true); |
| 275 | // Make sure that the arguments parsed are all positive. |
| 276 | CHECK_GT(FLAGS_corridor_length, 0.0); |
| 277 | CHECK_GT(FLAGS_pose_separation, 0.0); |
| 278 | CHECK_GT(FLAGS_odometry_stddev, 0.0); |
| 279 | CHECK_GT(FLAGS_range_stddev, 0.0); |
| 280 | |
| 281 | vector<double> odometry_values; |
| 282 | vector<double> range_readings; |
| 283 | SimulateRobot(&odometry_values, &range_readings); |
| 284 | |
| 285 | printf("Initial values:\n"); |
| 286 | PrintState(odometry_values, range_readings); |
| 287 | ceres::Problem problem; |
| 288 | |
| 289 | for (int i = 0; i < odometry_values.size(); ++i) { |
| 290 | // Create and add a DynamicAutoDiffCostFunction for the RangeConstraint from |
| 291 | // pose i. |
| 292 | vector<double*> parameter_blocks; |
| 293 | RangeConstraint::RangeCostFunction* range_cost_function = |
| 294 | RangeConstraint::Create( |
| 295 | i, range_readings[i], &odometry_values, ¶meter_blocks); |
| 296 | problem.AddResidualBlock(range_cost_function, NULL, parameter_blocks); |
| 297 | |
| 298 | // Create and add an AutoDiffCostFunction for the OdometryConstraint for |
| 299 | // pose i. |
| 300 | problem.AddResidualBlock(OdometryConstraint::Create(odometry_values[i]), |
| 301 | NULL, |
| 302 | &(odometry_values[i])); |
| 303 | } |
| 304 | |
| 305 | ceres::Solver::Options solver_options; |
| 306 | solver_options.minimizer_progress_to_stdout = true; |
| 307 | |
| 308 | Solver::Summary summary; |
| 309 | printf("Solving...\n"); |
| 310 | Solve(solver_options, &problem, &summary); |
| 311 | printf("Done.\n"); |
| 312 | std::cout << summary.FullReport() << "\n"; |
| 313 | printf("Final values:\n"); |
| 314 | PrintState(odometry_values, range_readings); |
| 315 | return 0; |
| 316 | } |