blob: 3ac56bae4817a263464b7eca4c55b1d58f23810e [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001.. default-domain:: cpp
2
3.. cpp:namespace:: ceres
4
5.. _chapter-spivak_notation:
6
7===============
8Spivak Notation
9===============
10
11To preserve our collective sanities, we will use Spivak's notation for
12derivatives. It is a functional notation that makes reading and
13reasoning about expressions involving derivatives simple.
14
15For a univariate function :math:`f`, :math:`f(a)` denotes its value at
16:math:`a`. :math:`Df` denotes its first derivative, and
17:math:`Df(a)` is the derivative evaluated at :math:`a`, i.e
18
19.. math::
20 Df(a) = \left . \frac{d}{dx} f(x) \right |_{x = a}
21
22:math:`D^kf` denotes the :math:`k^{\text{th}}` derivative of :math:`f`.
23
24For a bi-variate function :math:`g(x,y)`. :math:`D_1g` and
25:math:`D_2g` denote the partial derivatives of :math:`g` w.r.t the
26first and second variable respectively. In the classical notation this
27is equivalent to saying:
28
29.. math::
30
31 D_1 g = \frac{\partial}{\partial x}g(x,y) \text{ and } D_2 g = \frac{\partial}{\partial y}g(x,y).
32
33
34:math:`Dg` denotes the Jacobian of `g`, i.e.,
35
36.. math::
37
38 Dg = \begin{bmatrix} D_1g & D_2g \end{bmatrix}
39
40More generally for a multivariate function :math:`g:\mathbb{R}^n
41\longrightarrow \mathbb{R}^m`, :math:`Dg` denotes the :math:`m\times
42n` Jacobian matrix. :math:`D_i g` is the partial derivative of
43:math:`g` w.r.t the :math:`i^{\text{th}}` coordinate and the
44:math:`i^{\text{th}}` column of :math:`Dg`.
45
46Finally, :math:`D^2_1g` and :math:`D_1D_2g` have the obvious meaning
47as higher order partial derivatives.
48
49For more see Michael Spivak's book `Calculus on Manifolds
50<https://www.amazon.com/Calculus-Manifolds-Approach-Classical-Theorems/dp/0805390219>`_
51or a brief discussion of the `merits of this notation
52<http://www.vendian.org/mncharity/dir3/dxdoc/>`_ by
53Mitchell N. Charity.