blob: 5604797f526089176bb061f86ab1503b162985c8 [file] [log] [blame]
Brian Silverman72890c22015-09-19 14:37:37 -04001// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#include "main.h"
12#include <Eigen/SVD>
13
14template<typename MatrixType, typename JacobiScalar>
15void jacobi(const MatrixType& m = MatrixType())
16{
Brian Silverman72890c22015-09-19 14:37:37 -040017 Index rows = m.rows();
18 Index cols = m.cols();
19
20 enum {
21 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
22 ColsAtCompileTime = MatrixType::ColsAtCompileTime
23 };
24
25 typedef Matrix<JacobiScalar, 2, 1> JacobiVector;
26
27 const MatrixType a(MatrixType::Random(rows, cols));
28
29 JacobiVector v = JacobiVector::Random().normalized();
30 JacobiScalar c = v.x(), s = v.y();
31 JacobiRotation<JacobiScalar> rot(c, s);
32
33 {
34 Index p = internal::random<Index>(0, rows-1);
35 Index q;
36 do {
37 q = internal::random<Index>(0, rows-1);
38 } while (q == p);
39
40 MatrixType b = a;
41 b.applyOnTheLeft(p, q, rot);
42 VERIFY_IS_APPROX(b.row(p), c * a.row(p) + numext::conj(s) * a.row(q));
43 VERIFY_IS_APPROX(b.row(q), -s * a.row(p) + numext::conj(c) * a.row(q));
44 }
45
46 {
47 Index p = internal::random<Index>(0, cols-1);
48 Index q;
49 do {
50 q = internal::random<Index>(0, cols-1);
51 } while (q == p);
52
53 MatrixType b = a;
54 b.applyOnTheRight(p, q, rot);
55 VERIFY_IS_APPROX(b.col(p), c * a.col(p) - s * a.col(q));
56 VERIFY_IS_APPROX(b.col(q), numext::conj(s) * a.col(p) + numext::conj(c) * a.col(q));
57 }
58}
59
Austin Schuhc55b0172022-02-20 17:52:35 -080060EIGEN_DECLARE_TEST(jacobi)
Brian Silverman72890c22015-09-19 14:37:37 -040061{
62 for(int i = 0; i < g_repeat; i++) {
63 CALL_SUBTEST_1(( jacobi<Matrix3f, float>() ));
64 CALL_SUBTEST_2(( jacobi<Matrix4d, double>() ));
65 CALL_SUBTEST_3(( jacobi<Matrix4cf, float>() ));
66 CALL_SUBTEST_3(( jacobi<Matrix4cf, std::complex<float> >() ));
67
68 int r = internal::random<int>(2, internal::random<int>(1,EIGEN_TEST_MAX_SIZE)/2),
69 c = internal::random<int>(2, internal::random<int>(1,EIGEN_TEST_MAX_SIZE)/2);
70 CALL_SUBTEST_4(( jacobi<MatrixXf, float>(MatrixXf(r,c)) ));
71 CALL_SUBTEST_5(( jacobi<MatrixXcd, double>(MatrixXcd(r,c)) ));
72 CALL_SUBTEST_5(( jacobi<MatrixXcd, std::complex<double> >(MatrixXcd(r,c)) ));
73 // complex<float> is really important to test as it is the only way to cover conjugation issues in certain unaligned paths
74 CALL_SUBTEST_6(( jacobi<MatrixXcf, float>(MatrixXcf(r,c)) ));
75 CALL_SUBTEST_6(( jacobi<MatrixXcf, std::complex<float> >(MatrixXcf(r,c)) ));
76
77 TEST_SET_BUT_UNUSED_VARIABLE(r);
78 TEST_SET_BUT_UNUSED_VARIABLE(c);
79 }
80}