Brian Silverman | 70325d6 | 2015-09-20 17:00:43 -0400 | [diff] [blame^] | 1 | // Copyright (c) 2000, Google Inc. |
| 2 | // All rights reserved. |
| 3 | // |
| 4 | // Redistribution and use in source and binary forms, with or without |
| 5 | // modification, are permitted provided that the following conditions are |
| 6 | // met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright |
| 9 | // notice, this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above |
| 11 | // copyright notice, this list of conditions and the following disclaimer |
| 12 | // in the documentation and/or other materials provided with the |
| 13 | // distribution. |
| 14 | // * Neither the name of Google Inc. nor the names of its |
| 15 | // contributors may be used to endorse or promote products derived from |
| 16 | // this software without specific prior written permission. |
| 17 | // |
| 18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 29 | // --- |
| 30 | // |
| 31 | // Reorganized by Craig Silverstein |
| 32 | // |
| 33 | // In this file we define the arena template code. This includes the |
| 34 | // ArenaAllocator, which is meant only to be used with STL, and also |
| 35 | // the Gladiator (which needs to know how to new and delete various |
| 36 | // types of objects). |
| 37 | // |
| 38 | // If you're only using the MALLOC-LIKE functionality of the arena, |
| 39 | // you don't need to include this file at all! You do need to include |
| 40 | // it (in your own .cc file) if you want to use the STRING, STL, or |
| 41 | // NEW aspects of the arena. See arena.h for details on these types. |
| 42 | // |
| 43 | // ArenaAllocator is an STL allocator, but because it relies on unequal |
| 44 | // instances, it may not work with all standards-conforming STL |
| 45 | // implementations. But it works with SGI STL so we're happy. |
| 46 | // |
| 47 | // Here's an example of how the ArenaAllocator would be used. |
| 48 | // Say we have a vector of ints that we want to have use the arena |
| 49 | // for memory allocation. Here's one way to do it: |
| 50 | // UnsafeArena* arena = new UnsafeArena(1000); // or SafeArena(), or 10000 |
| 51 | // vector<int, ArenaAllocator<int, UnsafeArena> > v(arena); |
| 52 | // |
| 53 | // Note that every STL type always allows the allocator (in this case, |
| 54 | // the arena, which is automatically promoted to an allocator) as the last |
| 55 | // arg to the constructor. So if you would normally do |
| 56 | // vector<...> v(foo, bar), |
| 57 | // with the arena you can do |
| 58 | // vector<...> v(foo, bar, arena); |
| 59 | |
| 60 | #ifndef BASE_ARENA_INL_H_ |
| 61 | #define BASE_ARENA_INL_H_ |
| 62 | |
| 63 | #include <config.h> |
| 64 | #include "base/arena.h" |
| 65 | #include <assert.h> |
| 66 | #include <stddef.h> |
| 67 | #include <new> |
| 68 | #include <memory> |
| 69 | |
| 70 | namespace ctemplate { |
| 71 | |
| 72 | // T is the type we want to allocate, and C is the type of the arena. |
| 73 | // ArenaAllocator has the thread-safety characteristics of C. |
| 74 | template <class T, class C> class ArenaAllocator { |
| 75 | public: |
| 76 | typedef T value_type; |
| 77 | typedef size_t size_type; |
| 78 | typedef ptrdiff_t difference_type; |
| 79 | |
| 80 | typedef T* pointer; |
| 81 | typedef const T* const_pointer; |
| 82 | typedef T& reference; |
| 83 | typedef const T& const_reference; |
| 84 | pointer address(reference r) const { return &r; } |
| 85 | const_pointer address(const_reference r) const { return &r; } |
| 86 | size_type max_size() const { return size_t(-1) / sizeof(T); } |
| 87 | |
| 88 | // DO NOT USE! The default constructor is for gcc3 compatibility only. |
| 89 | ArenaAllocator() : arena_(0) { } |
| 90 | // This is not an explicit constructor! So you can pass in an arena* |
| 91 | // to functions needing an ArenaAllocator (like the astring constructor) |
| 92 | // and everything will work ok. |
| 93 | ArenaAllocator(C* arena) : arena_(arena) { } // NOLINT |
| 94 | ~ArenaAllocator() { } |
| 95 | |
| 96 | pointer allocate(size_type n, |
| 97 | std::allocator<void>::const_pointer /*hint*/ = 0) { |
| 98 | assert(arena_ && "No arena to allocate from!"); |
| 99 | return reinterpret_cast<T*>(arena_->AllocAligned(n * sizeof(T), |
| 100 | kAlignment)); |
| 101 | } |
| 102 | void deallocate(pointer p, size_type n) { |
| 103 | arena_->Free(p, n * sizeof(T)); |
| 104 | } |
| 105 | void construct(pointer p, const T & val) { |
| 106 | new(reinterpret_cast<void*>(p)) T(val); |
| 107 | } |
| 108 | void construct(pointer p) { |
| 109 | new(reinterpret_cast<void*>(p)) T(); |
| 110 | } |
| 111 | void destroy(pointer p) { p->~T(); } |
| 112 | |
| 113 | C* arena(void) const { return arena_; } |
| 114 | |
| 115 | template<class U> struct rebind { |
| 116 | typedef ArenaAllocator<U, C> other; |
| 117 | }; |
| 118 | |
| 119 | template<class U> ArenaAllocator(const ArenaAllocator<U, C>& other) |
| 120 | : arena_(other.arena()) { } |
| 121 | |
| 122 | template<class U> bool operator==(const ArenaAllocator<U, C>& other) const { |
| 123 | return arena_ == other.arena(); |
| 124 | } |
| 125 | |
| 126 | template<class U> bool operator!=(const ArenaAllocator<U, C>& other) const { |
| 127 | return arena_ != other.arena(); |
| 128 | } |
| 129 | |
| 130 | protected: |
| 131 | static const int kAlignment; |
| 132 | C* arena_; |
| 133 | }; |
| 134 | |
| 135 | template<class T, class C> const int ArenaAllocator<T, C>::kAlignment = |
| 136 | (1 == sizeof(T) ? 1 : BaseArena::kDefaultAlignment); |
| 137 | |
| 138 | |
| 139 | // 'new' must be in the global namespace. |
| 140 | } |
| 141 | using GOOGLE_NAMESPACE::UnsafeArena; |
| 142 | |
| 143 | |
| 144 | // Operators for allocation on the arena |
| 145 | // Syntax: new (AllocateInArena, arena) MyClass; |
| 146 | // new (AllocateInArena, arena) MyClass[num]; |
| 147 | // Useful for classes you can't descend from Gladiator, such as POD, |
| 148 | // STL containers, etc. |
| 149 | enum AllocateInArenaType { AllocateInArena }; |
| 150 | |
| 151 | inline void* operator new(size_t size, |
| 152 | AllocateInArenaType /* unused */, |
| 153 | UnsafeArena *arena) { |
| 154 | return arena->Alloc(size); |
| 155 | } |
| 156 | |
| 157 | inline void* operator new[](size_t size, |
| 158 | AllocateInArenaType /* unused */, |
| 159 | UnsafeArena *arena) { |
| 160 | return arena->Alloc(size); |
| 161 | } |
| 162 | |
| 163 | namespace ctemplate { |
| 164 | |
| 165 | // Ordinarily in C++, one allocates all instances of a class from an |
| 166 | // arena. If that's what you want to do, you don't need Gladiator. |
| 167 | // (However you may find ArenaOnlyGladiator useful.) |
| 168 | // |
| 169 | // However, for utility classes that are used by multiple clients, the |
| 170 | // everything-in-one-arena model may not work. Some clients may wish |
| 171 | // not to use an arena at all. Or perhaps a composite structure |
| 172 | // (tree) will contain multiple objects (nodes) and some of those |
| 173 | // objects will be created by a factory, using an arena, while other |
| 174 | // objects will be created on-the-fly by an unsuspecting user who |
| 175 | // doesn't know anything about the arena. |
| 176 | // |
| 177 | // To support that, have the arena-allocated class inherit from |
| 178 | // Gladiator. The ordinary operator new will continue to allocate |
| 179 | // from the heap. To allocate from an arena, do |
| 180 | // Myclass * m = new (AllocateInArena, a) Myclass (args, to, constructor); |
| 181 | // where a is either an arena or an allocator. Now you can call |
| 182 | // delete on all the objects, whether they are allocated from an arena |
| 183 | // or on the heap. Heap memory will be released, while arena memory will |
| 184 | // not be. |
| 185 | // |
| 186 | // If a client knows that no objects were allocated on the heap, it |
| 187 | // need not delete any objects (but it may if it wishes). The only |
| 188 | // objects that must be deleted are those that were actually allocated |
| 189 | // from the heap. |
| 190 | // |
| 191 | // NOTE: an exception to the google C++ style guide rule for "No multiple |
| 192 | // implementation inheritance" is granted for this class: you can treat this |
| 193 | // class as an "Interface" class, and use it in a multiple inheritence context, |
| 194 | // even though it implements operator new/delete. |
| 195 | |
| 196 | class Gladiator { |
| 197 | public: |
| 198 | Gladiator() { } |
| 199 | virtual ~Gladiator() { } |
| 200 | |
| 201 | // We do not override the array allocators, so array allocation and |
| 202 | // deallocation will always be from the heap. Typically, arrays are |
| 203 | // larger, and thus the costs of arena allocation are higher and the |
| 204 | // benefits smaller. Since arrays are typically allocated and deallocated |
| 205 | // very differently from scalars, this may not interfere too much with |
| 206 | // the arena concept. If it does pose a problem, flesh out the |
| 207 | // ArrayGladiator class below. |
| 208 | |
| 209 | void* operator new(size_t size) { |
| 210 | void* ret = ::operator new(1 + size); |
| 211 | static_cast<char *>(ret)[size] = 1; // mark as heap-allocated |
| 212 | return ret; |
| 213 | } |
| 214 | // the ignored parameter keeps us from stepping on placement new |
| 215 | template<class T> void* operator new(size_t size, const int ignored, |
| 216 | T* allocator) { |
| 217 | if (allocator) { |
| 218 | void* ret = allocator->AllocAligned(1 + size, |
| 219 | BaseArena::kDefaultAlignment); |
| 220 | static_cast<char*>(ret)[size] = 0; // mark as arena-allocated |
| 221 | return ret; |
| 222 | } else { |
| 223 | return operator new(size); // this is the function above |
| 224 | } |
| 225 | } |
| 226 | void operator delete(void* memory, size_t size) { |
| 227 | if (static_cast<char*>(memory)[size]) { |
| 228 | assert (1 == static_cast<char *>(memory)[size]); |
| 229 | ::operator delete(memory); |
| 230 | } else { |
| 231 | // We never call the allocator's Free method. If we need to do |
| 232 | // that someday, we can store a pointer to the arena instead of |
| 233 | // the Boolean marker flag. |
| 234 | } |
| 235 | } |
| 236 | template<class T> void operator delete(void* memory, size_t size, |
| 237 | const int ign, T* allocator) { |
| 238 | // This "placement delete" can only be called if the constructor |
| 239 | // throws an exception. |
| 240 | if (allocator) { |
| 241 | allocator->Free(memory, 1 + size); |
| 242 | } else { |
| 243 | ::operator delete(memory); |
| 244 | } |
| 245 | } |
| 246 | }; |
| 247 | |
| 248 | // This avoids the space overhead of Gladiator if you just want to |
| 249 | // override new and delete. It helps avoid some of the more common |
| 250 | // problems that can occur when overriding new and delete. |
| 251 | |
| 252 | class ArenaOnlyGladiator { |
| 253 | public: |
| 254 | ArenaOnlyGladiator() { } |
| 255 | // No virtual destructor is needed because we ignore the size |
| 256 | // parameter in all the delete functions. |
| 257 | // virtual ~ArenaOnlyGladiator() { } |
| 258 | |
| 259 | // can't just return NULL here -- compiler gives a warning. :-| |
| 260 | void* operator new(size_t /*size*/) { |
| 261 | assert(0); |
| 262 | return reinterpret_cast<void *>(1); |
| 263 | } |
| 264 | void* operator new[](size_t /*size*/) { |
| 265 | assert(0); |
| 266 | return reinterpret_cast<void *>(1); |
| 267 | } |
| 268 | |
| 269 | // the ignored parameter keeps us from stepping on placement new |
| 270 | template<class T> void* operator new(size_t size, const int ignored, |
| 271 | T* allocator) { |
| 272 | assert(allocator); |
| 273 | return allocator->AllocAligned(size, BaseArena::kDefaultAlignment); |
| 274 | } |
| 275 | template<class T> void* operator new[](size_t size, |
| 276 | const int ignored, T* allocator) { |
| 277 | assert(allocator); |
| 278 | return allocator->AllocAligned (size, BaseArena::kDefaultAlignment); |
| 279 | } |
| 280 | void operator delete(void* /*memory*/, size_t /*size*/) { } |
| 281 | template<class T> void operator delete(void* memory, size_t size, |
| 282 | const int ign, T* allocator) { } |
| 283 | void operator delete [](void* /*memory*/) { } |
| 284 | template<class T> void operator delete(void* memory, |
| 285 | const int ign, T* allocator) { } |
| 286 | }; |
| 287 | |
| 288 | #if 0 // ********** for example purposes only; 100% untested. |
| 289 | |
| 290 | // Note that this implementation incurs an overhead of kHeaderSize for |
| 291 | // every array that is allocated. *Before* the space is returned to the |
| 292 | // user, we store the address of the Arena that owns the space, and |
| 293 | // the length of th space itself. |
| 294 | |
| 295 | class ArrayGladiator : public Gladiator { |
| 296 | public: |
| 297 | void * operator new[] (size_t size) { |
| 298 | const int sizeplus = size + kHeaderSize; |
| 299 | void * const ret = ::operator new(sizeplus); |
| 300 | *static_cast<Arena **>(ret) = NULL; // mark as heap-allocated |
| 301 | *static_cast<size_t *>(ret + sizeof(Arena *)) = sizeplus; |
| 302 | return ret + kHeaderSize; |
| 303 | } |
| 304 | // the ignored parameter keeps us from stepping on placement new |
| 305 | template<class T> void * operator new[] (size_t size, |
| 306 | const int ignored, T * allocator) { |
| 307 | if (allocator) { |
| 308 | const int sizeplus = size + kHeaderSize; |
| 309 | void * const ret = |
| 310 | allocator->AllocAligned(sizeplus, BaseArena::kDefaultAlignment); |
| 311 | *static_cast<Arena **>(ret) = allocator->arena(); |
| 312 | *static_cast<size_t *>(ret + sizeof(Arena *)) = sizeplus; |
| 313 | return ret + kHeaderSize; |
| 314 | } else { |
| 315 | return operator new[](size); // this is the function above |
| 316 | } |
| 317 | } |
| 318 | void operator delete [] (void * memory) { |
| 319 | memory -= kHeaderSize; |
| 320 | Arena * const arena = *static_cast<Arena **>(memory); |
| 321 | size_t sizeplus = *static_cast<size_t *>(memory + sizeof(arena)); |
| 322 | if (arena) { |
| 323 | arena->SlowFree(memory, sizeplus); |
| 324 | } else { |
| 325 | ::operator delete (memory); |
| 326 | } |
| 327 | } |
| 328 | template<class T> void * operator delete (void * memory, |
| 329 | const int ign, T * allocator) { |
| 330 | // This "placement delete" can only be called if the constructor |
| 331 | // throws an exception. |
| 332 | memory -= kHeaderSize; |
| 333 | size_t sizeplus = *static_cast<size_t *>(memory + sizeof(Arena *)); |
| 334 | if (allocator) { |
| 335 | allocator->Free(memory, 1 + size); |
| 336 | } else { |
| 337 | operator delete (memory); |
| 338 | } |
| 339 | } |
| 340 | |
| 341 | protected: |
| 342 | static const int kMinSize = sizeof size_t + sizeof(Arena *); |
| 343 | static const int kHeaderSize = kMinSize > BaseArena::kDefaultAlignment ? |
| 344 | 2 * BaseArena::kDefaultAlignment : BaseArena::kDefaultAlignment; |
| 345 | }; |
| 346 | |
| 347 | #endif // ********** example |
| 348 | |
| 349 | } |
| 350 | |
| 351 | #endif // BASE_ARENA_INL_H_ |