blob: 6133075f4934f0869881fab1c58ccfd462ddaefd [file] [log] [blame]
James Kuszmaulf5eb4682023-09-22 17:16:59 -07001#ifndef AOS_FLATBUFFERS_STATIC_VECTOR_H_
2#define AOS_FLATBUFFERS_STATIC_VECTOR_H_
3#include <span>
4
5#include "flatbuffers/base.h"
James Kuszmaule65fb402024-01-13 14:10:51 -08006#include "flatbuffers/vector.h"
James Kuszmaulf5eb4682023-09-22 17:16:59 -07007#include "glog/logging.h"
8
9#include "aos/containers/inlined_vector.h"
10#include "aos/containers/sized_array.h"
11#include "aos/flatbuffers/base.h"
12
13namespace aos::fbs {
14
15namespace internal {
16// Helper class for managing how we specialize the Vector object for different
17// contained types.
18// Users of the Vector class should never need to care about this.
19// Template arguments:
20// T: The type that the vector stores.
21// kInline: Whether the type in question is stored inline or not.
22// Enable: Used for SFINAE around struct values; can be ignored.
23// The struct provides the following types:
24// Type: The type of the data that will be stored inline in the vector.
25// ObjectType: The type of the actual data (only used for non-inline objects).
26// FlatbufferType: The type used by flatbuffers::Vector to store this type.
27// ConstFlatbufferType: The type used by a const flatbuffers::Vector to store
28// this type.
29// kDataAlign: Alignment required by the stored type.
30// kDataSize: Nominal size required by each non-inline data member. This is
31// what will be initially allocated; once created, individual members may
32// grow to accommodate dynamically lengthed vectors.
33template <typename T, bool kInline, class Enable = void>
34struct InlineWrapper;
35} // namespace internal
36
37// This Vector class provides a mutable, resizeable, flatbuffer vector.
38//
39// Upon creation, the Vector will start with enough space allocated for
40// kStaticLength elements, and must be provided with a memory buffer that
41// is large enough to serialize all the kStaticLength members (kStaticLength may
42// be zero).
43//
44// Once created, the Vector may be grown using calls to reserve().
45// This will result in the Vector attempting to allocate memory via its
46// parent object; such calls may fail if there is no space available in the
47// allocator.
48//
49// Note that if you are using the Vector class in a realtime context (and thus
50// must avoid dynamic memory allocations) you must only be using a Vector of
51// inline data (i.e., scalars, enums, or structs). Flatbuffer tables and strings
52// require overhead to manage and so require some form of dynamic memory
53// allocation. If we discover a strong use-case for such things, then we may
54// provide some interface that allows managing said metadata on the stack or
55// in another realtime-safe manner.
56//
57// Template arguments:
58// T: Type contained by the vector; either a scalar/struct/enum type or a
59// static flatbuffer type of some sort (a String or an implementation of
60// aos::fbs::Table).
61// kStaticLength: Number of elements to statically allocate memory for.
62// May be zero.
63// kInline: Whether the type T will be stored inline in the vector.
64// kForceAlign: Alignment to force for the start of the vector (e.g., for
65// byte arrays it may be desirable to have the entire array aligned).
66// kNullTerminate: Whether to reserve an extra byte past the end of
67// the inline data for null termination. Not included in kStaticLength,
68// so if e.g. you want to store the string "abc" then kStaticLength can
69// be 3 and kNullTerminate can be true and the vector data will take
70// up 4 bytes of memory.
71//
72// Vector buffer memory layout:
73// * Requirements:
74// * Minimum alignment of 4 bytes (for element count).
75// * The start of the vector data must be aligned to either
76// alignof(InlineType) or a user-specified number.
77// * The element count for the vector must immediately precede the vector
78// data (and so may itself not be aligned to alignof(InlineType)).
79// * For non-inlined types, the individual types must be aligned to
80// their own alignment.
81// * In order to accommodate this, the vector buffer as a whole must
82// generally be aligned to the greatest of the above alignments. There
83// are two reasonable ways one could do this:
84// * Require that the 4th byte of the buffer provided by aligned to
85// the maximum alignment of its contents.
86// * Require that the buffer itself by aligned, and provide padding
87// ourselves. The Vector would then have to expose its own offset
88// because it would not start at the start of the buffer.
89// The former requires that the wrapping code understand the internals
90// of how vectors work; the latter generates extra padding and adds
91// extra logic around handling non-zero offsets.
92// To maintain general simplicity, we will use the second condition and eat
93// the cost of the potential extra few bytes of padding.
94// * The layout of the buffer will thus be:
95// [padding; element_count; inline_data; padding; offset_data]
96// The first padding will be of size max(0, kAlign - 4).
97// The element_count is of size 4.
98// The inline_data is of size sizeof(InlineType) * kStaticLength.
99// The second padding is of size
100// (kAlign - ((sizeof(InlineType) * kStaticLength) % kAlign)).
101// The remaining data is only present if kInline is false.
102// The offset data is of size T::kSize * kStaticLength. T::kSize % T::kAlign
103// must be zero.
104// Note that no padding is required on the end because T::kAlign will always
105// end up being equal to the alignment (this can only be violated if
106// kForceAlign is used, but we do not allow that).
James Kuszmaul1c9693f2023-12-08 09:45:26 -0800107// The Vector class leaves any padding uninitialized. Until and unless we
108// determine that it is a performance issue, it is the responsibility of the
109// parent of this object to zero-initialize the memory.
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700110template <typename T, size_t kStaticLength, bool kInline,
111 size_t kForceAlign = 0, bool kNullTerminate = false>
112class Vector : public ResizeableObject {
James Kuszmaul22448052023-12-14 15:55:14 -0800113 template <typename VectorType, typename ValueType>
114 class generic_iterator {
115 public:
116 using iterator_category = std::random_access_iterator_tag;
117 using value_type = ValueType;
118 using difference_type = std::ptrdiff_t;
119 using pointer = value_type *;
120 using reference = value_type &;
121
122 explicit generic_iterator(VectorType *vector, size_t index)
123 : vector_(vector), index_(index) {}
124 generic_iterator(const generic_iterator &) = default;
125 generic_iterator() : vector_(nullptr), index_(0) {}
126 generic_iterator &operator=(const generic_iterator &) = default;
127
128 generic_iterator &operator++() {
129 ++index_;
130 return *this;
131 }
132 generic_iterator operator++(int) {
133 generic_iterator retval = *this;
134 ++(*this);
135 return retval;
136 }
137 generic_iterator &operator--() {
138 --index_;
139 return *this;
140 }
141 generic_iterator operator--(int) {
142 generic_iterator retval = *this;
143 --(*this);
144 return retval;
145 }
146 bool operator==(const generic_iterator &other) const {
147 CHECK_EQ(other.vector_, vector_);
148 return index_ == other.index_;
149 }
150 std::strong_ordering operator<=>(const generic_iterator &other) const {
151 CHECK_EQ(other.vector_, vector_);
152 return index_ <=> other.index_;
153 }
154 reference operator*() const { return vector_->at(index_); }
155 difference_type operator-(const generic_iterator &other) const {
156 CHECK_EQ(other.vector_, vector_);
157 return index_ - other.index_;
158 }
159 generic_iterator operator-(difference_type decrement) const {
160 return generic_iterator(vector_, index_ - decrement);
161 }
162 friend generic_iterator operator-(difference_type decrement,
163 const generic_iterator &rhs) {
164 return rhs - decrement;
165 }
166 generic_iterator operator+(difference_type increment) const {
167 return generic_iterator(vector_, index_ + increment);
168 }
169 friend generic_iterator operator+(difference_type increment,
170 const generic_iterator &rhs) {
171 return rhs + increment;
172 }
173 generic_iterator &operator+=(difference_type increment) {
174 index_ += increment;
175 return *this;
176 }
177 generic_iterator &operator-=(difference_type increment) {
178 index_ -= increment;
179 return *this;
180 }
181 reference operator[](difference_type index) const {
182 return *(*this + index);
183 }
184
185 private:
186 VectorType *vector_;
187 size_t index_;
188 };
189
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700190 public:
James Kuszmaul22448052023-12-14 15:55:14 -0800191 using iterator = generic_iterator<Vector, T>;
192 using const_iterator = generic_iterator<const Vector, const T>;
193
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700194 static_assert(kInline || !kNullTerminate,
195 "It does not make sense to null-terminate vectors of objects.");
196 // Type stored inline in the serialized vector (offsets for tables/strings; T
197 // otherwise).
198 using InlineType = typename internal::InlineWrapper<T, kInline>::Type;
199 // OUt-of-line type for out-of-line T.
200 using ObjectType = typename internal::InlineWrapper<T, kInline>::ObjectType;
201 // Type used as the template parameter to flatbuffers::Vector<>.
202 using FlatbufferType =
203 typename internal::InlineWrapper<T, kInline>::FlatbufferType;
204 using ConstFlatbufferType =
205 typename internal::InlineWrapper<T, kInline>::ConstFlatbufferType;
James Kuszmaul6be41022023-12-20 11:55:28 -0800206 // FlatbufferObjectType corresponds to the type used by the flatbuffer
207 // "object" API (i.e. the FlatbufferT types).
208 // This type will be something unintelligble for inline types.
209 using FlatbufferObjectType =
210 typename internal::InlineWrapper<T, kInline>::FlatbufferObjectType;
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700211 // flatbuffers::Vector type that corresponds to this Vector.
212 typedef flatbuffers::Vector<FlatbufferType> Flatbuffer;
213 typedef const flatbuffers::Vector<ConstFlatbufferType> ConstFlatbuffer;
214 // Alignment of the inline data.
215 static constexpr size_t kInlineAlign =
216 std::max(kForceAlign, alignof(InlineType));
217 // Type used for serializing the length of the vector.
218 typedef uint32_t LengthType;
219 // Overall alignment of this type, and required alignment of the buffer that
220 // must be provided to the Vector.
221 static constexpr size_t kAlign =
222 std::max({alignof(LengthType), kInlineAlign,
223 internal::InlineWrapper<T, kInline>::kDataAlign});
224 // Padding inserted prior to the length element of the vector (to manage
225 // alignment of the data properly; see class comment)
226 static constexpr size_t kPadding1 =
227 std::max<size_t>(0, kAlign - sizeof(LengthType));
228 // Size of the vector length field.
229 static constexpr size_t kLengthSize = sizeof(LengthType);
230 // Size of all the inline vector data, including null termination (prior to
231 // any dynamic increases in size).
232 static constexpr size_t kInlineSize =
233 sizeof(InlineType) * (kStaticLength + (kNullTerminate ? 1 : 0));
234 // Per-element size of any out-of-line data.
235 static constexpr size_t kDataElementSize =
236 internal::InlineWrapper<T, kInline>::kDataSize;
237 // Padding between the inline data and any out-of-line data, to manage
238 // mismatches in alignment between the two.
239 static constexpr size_t kPadding2 = kAlign - (kInlineSize % kAlign);
240 // Total statically allocated space for any out-of-line data ("offset data")
241 // (prior to any dynamic increases in size).
242 static constexpr size_t kOffsetOffsetDataSize =
243 kInline ? 0 : (kStaticLength * kDataElementSize);
244 // Total nominal size of the Vector.
245 static constexpr size_t kSize =
246 kPadding1 + kLengthSize + kInlineSize + kPadding2 + kOffsetOffsetDataSize;
247 // Offset from the start of the provided buffer to where the actual start of
248 // the vector is.
249 static constexpr size_t kOffset = kPadding1;
250 // Constructors; the provided buffer must be aligned to kAlign and be kSize in
251 // length. parent must be non-null.
252 Vector(std::span<uint8_t> buffer, ResizeableObject *parent)
253 : ResizeableObject(buffer, parent) {
254 CHECK_EQ(0u, reinterpret_cast<size_t>(buffer.data()) % kAlign);
255 CHECK_EQ(kSize, buffer.size());
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700256 SetLength(0u);
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700257 if (!kInline) {
258 // Initialize the offsets for any sub-tables. These are used to track
259 // where each table will get serialized in memory as memory gets
260 // resized/moved around.
261 for (size_t index = 0; index < kStaticLength; ++index) {
262 object_absolute_offsets_.emplace_back(kPadding1 + kLengthSize +
263 kInlineSize + kPadding2 +
264 index * kDataElementSize);
265 }
266 }
267 }
268 Vector(const Vector &) = delete;
269 Vector &operator=(const Vector &) = delete;
270 virtual ~Vector() {}
271 // Current allocated length of this vector.
272 // Does not include null termination.
273 size_t capacity() const { return allocated_length_; }
274 // Current length of the vector.
275 // Does not include null termination.
276 size_t size() const { return length_; }
277
278 // Appends an element to the Vector. Used when kInline is false. Returns
279 // nullptr if the append failed due to insufficient capacity. If you need to
280 // increase the capacity() of the vector, call reserve().
281 [[nodiscard]] T *emplace_back();
282 // Appends an element to the Vector. Used when kInline is true. Returns false
283 // if there is insufficient capacity for a new element.
284 [[nodiscard]] bool emplace_back(T element) {
285 static_assert(kInline);
286 return AddInlineElement(element);
287 }
288
289 // Adjusts the allocated size of the vector (does not affect the actual
290 // current length as returned by size()). Returns true on success, and false
291 // if the allocation failed for some reason.
292 // Note that reductions in size will not currently result in the allocated
293 // size actually changing.
294 [[nodiscard]] bool reserve(size_t new_length) {
295 if (new_length > allocated_length_) {
296 const size_t new_elements = new_length - allocated_length_;
297 // First, we must add space for our new inline elements.
298 if (!InsertBytes(
299 inline_data() + allocated_length_ + (kNullTerminate ? 1 : 0),
300 new_elements * sizeof(InlineType), SetZero::kYes)) {
301 return false;
302 }
303 if (!kInline) {
304 // For non-inline objects, create the space required for all the new
305 // object data.
306 const size_t insertion_point = buffer_.size();
307 if (!InsertBytes(buffer_.data() + insertion_point,
308 new_elements * kDataElementSize, SetZero::kYes)) {
309 return false;
310 }
311 for (size_t index = 0; index < new_elements; ++index) {
312 // Note that the already-allocated data may be arbitrarily-sized, so
313 // we cannot use the same static calculation that we do in the
314 // constructor.
315 object_absolute_offsets_.emplace_back(insertion_point +
316 index * kDataElementSize);
317 }
318 objects_.reserve(new_length);
319 }
320 allocated_length_ = new_length;
321 }
322 return true;
323 }
324
325 // Accessors for using the Vector as a flatbuffers::Vector.
326 // Note that these pointers will be unstable if any memory allocations occur
327 // that cause memory to get shifted around.
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700328 ConstFlatbuffer *AsFlatbufferVector() const {
329 return reinterpret_cast<const Flatbuffer *>(vector_buffer().data());
330 }
331
332 // Copies the contents of the provided vector into this; returns false on
333 // failure (e.g., if the provided vector is too long for the amount of space
334 // we can allocate through reserve()).
James Kuszmaul710883b2023-12-14 14:34:48 -0800335 // This is a deep copy, and will call FromFlatbuffer on any constituent
336 // objects.
James Kuszmaul692780f2023-12-20 14:01:56 -0800337 [[nodiscard]] bool FromFlatbuffer(ConstFlatbuffer *vector) {
338 return FromFlatbuffer(*CHECK_NOTNULL(vector));
339 }
340 [[nodiscard]] bool FromFlatbuffer(ConstFlatbuffer &vector);
James Kuszmaul6be41022023-12-20 11:55:28 -0800341 // The remaining FromFlatbuffer() overloads are for when using the flatbuffer
342 // "object" API, which uses std::vector's for representing vectors.
343 [[nodiscard]] bool FromFlatbuffer(const std::vector<InlineType> &vector) {
344 static_assert(kInline);
345 return FromData(vector.data(), vector.size());
346 }
347 // Overload for vectors of bools, since the standard library may not use a
348 // full byte per vector element.
349 [[nodiscard]] bool FromFlatbuffer(const std::vector<bool> &vector) {
350 static_assert(kInline);
351 // We won't be able to do a clean memcpy because std::vector<bool> may be
352 // implemented using bit-packing.
353 return FromIterator(vector.cbegin(), vector.cend());
354 }
355 // Overload for non-inline types. Note that to avoid having this overload get
356 // resolved with inline types, we make FlatbufferObjectType != InlineType.
357 [[nodiscard]] bool FromFlatbuffer(
358 const std::vector<FlatbufferObjectType> &vector) {
359 static_assert(!kInline);
360 return FromNotInlineIterable(vector);
361 }
362
363 // Copies values from the provided data pointer into the vector, resizing the
364 // vector as needed to match. Returns false on failure (e.g., if the
365 // underlying allocator has insufficient space to perform the copy). Only
366 // works for inline data types.
367 [[nodiscard]] bool FromData(const InlineType *input_data, size_t input_size) {
368 static_assert(kInline);
369 if (!reserve(input_size)) {
370 return false;
371 }
372
373 // We will be overwriting the whole vector very shortly; there is no need to
374 // clear the buffer to zero.
375 resize_inline(input_size, SetZero::kNo);
376
377 memcpy(inline_data(), input_data, size() * sizeof(InlineType));
378 return true;
379 }
380
381 // Copies values from the provided iterators into the vector, resizing the
382 // vector as needed to match. Returns false on failure (e.g., if the
383 // underlying allocator has insufficient space to perform the copy). Only
384 // works for inline data types.
385 // Does not attempt any optimizations if the iterators meet the
386 // std::contiguous_iterator concept; instead, it simply copies each element
387 // out one-by-one.
388 template <typename Iterator>
389 [[nodiscard]] bool FromIterator(Iterator begin, Iterator end) {
390 static_assert(kInline);
391 resize(0);
392 for (Iterator it = begin; it != end; ++it) {
393 if (!reserve(size() + 1)) {
394 return false;
395 }
396 // Should never fail, due to the reserve() above.
397 CHECK(emplace_back(*it));
398 }
399 return true;
400 }
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700401
402 // Returns the element at the provided index. index must be less than size().
403 const T &at(size_t index) const {
404 CHECK_LT(index, length_);
405 return unsafe_at(index);
406 }
407
408 // Same as at(), except that bounds checks are only performed in non-optimized
409 // builds.
410 // TODO(james): The GetInlineElement() call itself does some bounds-checking;
411 // consider down-grading that.
412 const T &unsafe_at(size_t index) const {
413 DCHECK_LT(index, length_);
414 if (kInline) {
415 // This reinterpret_cast is extremely wrong if T != InlineType (this is
416 // fine because we only do this if kInline is true).
417 // TODO(james): Get the templating improved so that we can get away with
418 // specializing at() instead of using if statements. Resolving this will
419 // also allow deduplicating the Resize() calls.
420 // This specialization is difficult because you cannot partially
421 // specialize a templated class method (online things seem to suggest e.g.
422 // using a struct as the template parameter rather than having separate
423 // parameters).
424 return reinterpret_cast<const T &>(GetInlineElement(index));
425 } else {
426 return objects_[index].t;
427 }
428 }
429
430 // Returns a mutable pointer to the element at the provided index. index must
431 // be less than size().
432 T &at(size_t index) {
433 CHECK_LT(index, length_);
434 return unsafe_at(index);
435 }
436
437 // Same as at(), except that bounds checks are only performed in non-optimized
438 // builds.
439 // TODO(james): The GetInlineElement() call itself does some bounds-checking;
440 // consider down-grading that.
441 T &unsafe_at(size_t index) {
442 DCHECK_LT(index, length_);
443 if (kInline) {
444 // This reinterpret_cast is extremely wrong if T != InlineType (this is
445 // fine because we only do this if kInline is true).
446 // TODO(james): Get the templating improved so that we can get away with
447 // specializing at() instead of using if statements. Resolving this will
448 // also allow deduplicating the Resize() calls.
449 // This specialization is difficult because you cannot partially
450 // specialize a templated class method (online things seem to suggest e.g.
451 // using a struct as the template parameter rather than having separate
452 // parameters).
453 return reinterpret_cast<T &>(GetInlineElement(index));
454 } else {
455 return objects_[index].t;
456 }
457 }
458
459 const T &operator[](size_t index) const { return at(index); }
460 T &operator[](size_t index) { return at(index); }
461
462 // Resizes the vector to the requested size.
463 // size must be less than or equal to the current capacity() of the vector.
464 // Does not allocate additional memory (call reserve() to allocate additional
465 // memory).
466 // Zero-initializes all inline element; initializes all subtable/string
467 // elements to extant but empty objects.
468 void resize(size_t size);
469
470 // Resizes an inline vector to the requested size.
471 // When changing the size of the vector, the removed/inserted elements will be
472 // set to zero if requested. Otherwise, they will be left uninitialized.
473 void resize_inline(size_t size, SetZero set_zero) {
474 CHECK_LE(size, allocated_length_);
475 static_assert(
476 kInline,
477 "Vector::resize_inline() only works for inline vector types (scalars, "
478 "enums, structs).");
479 if (size == length_) {
480 return;
481 }
482 if (set_zero == SetZero::kYes) {
483 memset(
484 reinterpret_cast<void *>(inline_data() + std::min(size, length_)), 0,
485 std::abs(static_cast<ssize_t>(length_) - static_cast<ssize_t>(size)) *
486 sizeof(InlineType));
487 }
488 length_ = size;
489 SetLength(length_);
490 }
491 // Resizes a vector of offsets to the requested size.
492 // If the size is increased, the new elements will be initialized
493 // to empty but extant objects for non-inlined types (so, zero-length
494 // vectors/strings; objects that exist but have no fields populated).
495 // Note that this is always equivalent to resize().
496 void resize_not_inline(size_t size) {
497 CHECK_LE(size, allocated_length_);
498 static_assert(!kInline,
499 "Vector::resize_not_inline() only works for offset vector "
500 "types (objects, strings).");
501 if (size == length_) {
502 return;
503 } else if (length_ > size) {
504 // TODO: Remove any excess allocated memory.
505 length_ = size;
506 SetLength(length_);
507 return;
508 } else {
509 while (length_ < size) {
510 CHECK_NOTNULL(emplace_back());
511 }
512 }
513 }
514
515 // Accessors directly to the inline data of a vector.
516 const T *data() const {
517 static_assert(kInline,
518 "If you have a use-case for directly accessing the "
519 "flatbuffer data pointer for vectors of "
520 "objects/strings, please start a discussion.");
521 return inline_data();
522 }
523
524 T *data() {
525 static_assert(kInline,
526 "If you have a use-case for directly accessing the "
527 "flatbuffer data pointer for vectors of "
528 "objects/strings, please start a discussion.");
529 return inline_data();
530 }
531
James Kuszmaul22448052023-12-14 15:55:14 -0800532 // Iterators to allow easy use with standard C++ features.
533 iterator begin() { return iterator(this, 0); }
534 iterator end() { return iterator(this, size()); }
535 const_iterator begin() const { return const_iterator(this, 0); }
536 const_iterator end() const { return const_iterator(this, size()); }
537
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700538 std::string SerializationDebugString() const {
539 std::stringstream str;
540 str << "Raw Size: " << kSize << " alignment: " << kAlign
541 << " allocated length: " << allocated_length_ << " inline alignment "
542 << kInlineAlign << " kPadding1 " << kPadding1 << "\n";
543 str << "Observed length " << GetLength() << " (expected " << length_
544 << ")\n";
545 str << "Inline Size " << kInlineSize << " Inline bytes/value:\n";
546 // TODO(james): Get pretty-printing for structs so we can provide better
547 // debug.
548 internal::DebugBytes(
549 internal::GetSubSpan(vector_buffer(), kLengthSize,
550 sizeof(InlineType) * allocated_length_),
551 str);
552 str << "kPadding2 " << kPadding2 << " offset data size "
553 << kOffsetOffsetDataSize << "\n";
554 return str.str();
555 }
556
557 protected:
558 friend struct internal::TableMover<
559 Vector<T, kStaticLength, kInline, kForceAlign, kNullTerminate>>;
560 // protected so that the String class can access the move constructor.
561 Vector(Vector &&) = default;
562
563 private:
564 // See kAlign and kOffset.
565 size_t Alignment() const final { return kAlign; }
566 size_t AbsoluteOffsetOffset() const override { return kOffset; }
567 // Returns a buffer that starts at the start of the vector itself (past any
568 // padding).
569 std::span<uint8_t> vector_buffer() {
570 return internal::GetSubSpan(buffer(), kPadding1);
571 }
572 std::span<const uint8_t> vector_buffer() const {
573 return internal::GetSubSpan(buffer(), kPadding1);
574 }
575
576 bool AddInlineElement(InlineType e) {
577 if (length_ == allocated_length_) {
578 return false;
579 }
580 SetInlineElement(length_, e);
581 ++length_;
582 SetLength(length_);
583 return true;
584 }
585
586 void SetInlineElement(size_t index, InlineType value) {
587 CHECK_LT(index, allocated_length_);
588 inline_data()[index] = value;
589 }
590
591 InlineType &GetInlineElement(size_t index) {
592 CHECK_LT(index, allocated_length_);
593 return inline_data()[index];
594 }
595
596 const InlineType &GetInlineElement(size_t index) const {
597 CHECK_LT(index, allocated_length_);
598 return inline_data()[index];
599 }
600
601 // Returns a pointer to the start of the inline data itself.
602 InlineType *inline_data() {
603 return reinterpret_cast<InlineType *>(vector_buffer().data() + kLengthSize);
604 }
605 const InlineType *inline_data() const {
606 return reinterpret_cast<const InlineType *>(vector_buffer().data() +
607 kLengthSize);
608 }
609
610 // Updates the length of the vector to match the provided length. Does not set
611 // the length_ member.
612 void SetLength(LengthType length) {
613 *reinterpret_cast<LengthType *>(vector_buffer().data()) = length;
614 if (kNullTerminate) {
615 memset(reinterpret_cast<void *>(inline_data() + length), 0,
616 sizeof(InlineType));
617 }
618 }
619 LengthType GetLength() const {
620 return *reinterpret_cast<const LengthType *>(vector_buffer().data());
621 }
622
623 // Overrides to allow ResizeableObject to manage memory adjustments.
624 size_t NumberOfSubObjects() const final {
625 return kInline ? 0 : allocated_length_;
626 }
627 using ResizeableObject::SubObject;
628 SubObject GetSubObject(size_t index) final {
629 return SubObject{
630 reinterpret_cast<uoffset_t *>(&GetInlineElement(index)),
631 // In order to let this compile regardless of whether type T is an
632 // object type or not, we just use a reinterpret_cast.
633 (index < length_)
634 ? reinterpret_cast<ResizeableObject *>(&objects_[index].t)
635 : nullptr,
636 &object_absolute_offsets_[index]};
637 }
638 // Implementation that handles copying from a flatbuffers::Vector of an inline
639 // data type.
James Kuszmaul692780f2023-12-20 14:01:56 -0800640 [[nodiscard]] bool FromInlineFlatbuffer(ConstFlatbuffer &vector) {
641 return FromData(reinterpret_cast<const InlineType *>(vector.Data()),
642 vector.size());
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700643 }
644
645 // Implementation that handles copying from a flatbuffers::Vector of a
646 // not-inline data type.
James Kuszmaul6be41022023-12-20 11:55:28 -0800647 template <typename Iterable>
648 [[nodiscard]] bool FromNotInlineIterable(const Iterable &vector) {
649 if (!reserve(vector.size())) {
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700650 return false;
651 }
652 // "Clear" the vector.
653 resize_not_inline(0);
654
James Kuszmaul6be41022023-12-20 11:55:28 -0800655 for (const auto &entry : vector) {
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700656 if (!CHECK_NOTNULL(emplace_back())->FromFlatbuffer(entry)) {
657 return false;
658 }
659 }
660 return true;
661 }
662
James Kuszmaul692780f2023-12-20 14:01:56 -0800663 [[nodiscard]] bool FromNotInlineFlatbuffer(const Flatbuffer &vector) {
664 return FromNotInlineIterable(vector);
James Kuszmaul6be41022023-12-20 11:55:28 -0800665 }
666
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700667 // In order to allow for easy partial template specialization, we use a
668 // non-member class to call FromInline/FromNotInlineFlatbuffer and
669 // resize_inline/resize_not_inline. There are not actually any great ways to
670 // do this with just our own class member functions, so instead we make these
671 // methods members of a friend of the Vector class; we then partially
672 // specialize the entire InlineWrapper class and use it to isolate anything
673 // that needs to have a common user interface while still having separate
674 // actual logic.
675 template <typename T_, bool kInline_, class Enable_>
676 friend struct internal::InlineWrapper;
677
678 // Note: The objects here really want to be owned by this object (as opposed
679 // to e.g. returning a stack-allocated object from the emplace_back() methods
680 // that the user then owns). There are two main challenges with have the user
681 // own the object on question:
682 // 1. We can't have >1 reference floating around, or else one object's state
683 // can become out of date. This forces us to do ref-counting and could
684 // make certain types of code obnoxious to write.
685 // 2. Once the user-created object goes out of scope, we lose all of its
686 // internal state. In _theory_ it should be possible to reconstruct most
687 // of the relevant state by examining the contents of the buffer, but
688 // doing so would be cumbersome.
689 aos::InlinedVector<internal::TableMover<ObjectType>,
690 kInline ? 0 : kStaticLength>
691 objects_;
692 aos::InlinedVector<size_t, kInline ? 0 : kStaticLength>
693 object_absolute_offsets_;
694 // Current actual length of the vector.
695 size_t length_ = 0;
696 // Current length that we have allocated space available for.
697 size_t allocated_length_ = kStaticLength;
698};
699
700template <typename T, size_t kStaticLength, bool kInline, size_t kForceAlign,
701 bool kNullTerminate>
702T *Vector<T, kStaticLength, kInline, kForceAlign,
703 kNullTerminate>::emplace_back() {
704 static_assert(!kInline);
705 if (length_ >= allocated_length_) {
706 return nullptr;
707 }
708 const size_t object_start = object_absolute_offsets_[length_];
709 std::span<uint8_t> object_buffer =
710 internal::GetSubSpan(buffer(), object_start, T::kSize);
711 objects_.emplace_back(object_buffer, this);
712 const uoffset_t offset =
713 object_start - (reinterpret_cast<size_t>(&GetInlineElement(length_)) -
714 reinterpret_cast<size_t>(buffer().data()));
715 CHECK(AddInlineElement(offset));
716 return &objects_[objects_.size() - 1].t;
717}
718
719// The String class is a special version of the Vector that is always
720// null-terminated, always contains 1-byte character elements, and which has a
721// few extra methods for convenient string access.
722template <size_t kStaticLength>
723class String : public Vector<char, kStaticLength, true, 0, true> {
724 public:
725 typedef Vector<char, kStaticLength, true, 0, true> VectorType;
726 typedef flatbuffers::String Flatbuffer;
James Kuszmaul6be41022023-12-20 11:55:28 -0800727 typedef std::string FlatbufferObjectType;
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700728 String(std::span<uint8_t> buffer, ResizeableObject *parent)
729 : VectorType(buffer, parent) {}
730 virtual ~String() {}
731 void SetString(std::string_view string) {
732 CHECK_LT(string.size(), VectorType::capacity());
733 VectorType::resize_inline(string.size(), SetZero::kNo);
734 memcpy(VectorType::data(), string.data(), string.size());
735 }
James Kuszmaul6be41022023-12-20 11:55:28 -0800736 using VectorType::FromFlatbuffer;
737 [[nodiscard]] bool FromFlatbuffer(const std::string &string) {
738 return VectorType::FromData(string.data(), string.size());
739 }
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700740 std::string_view string_view() const {
741 return std::string_view(VectorType::data(), VectorType::size());
742 }
743 std::string str() const {
744 return std::string(VectorType::data(), VectorType::size());
745 }
746 const char *c_str() const { return VectorType::data(); }
747
748 private:
749 friend struct internal::TableMover<String<kStaticLength>>;
750 String(String &&) = default;
751};
752
753namespace internal {
754// Specialization for all non-inline vector types. All of these types will just
755// use offsets for their inline data and have appropriate member types/constants
756// for the remaining fields.
757template <typename T>
758struct InlineWrapper<T, false, void> {
759 typedef uoffset_t Type;
760 typedef T ObjectType;
761 typedef flatbuffers::Offset<typename T::Flatbuffer> FlatbufferType;
762 typedef flatbuffers::Offset<typename T::Flatbuffer> ConstFlatbufferType;
James Kuszmaul6be41022023-12-20 11:55:28 -0800763 typedef T::FlatbufferObjectType FlatbufferObjectType;
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700764 static_assert((T::kSize % T::kAlign) == 0);
765 static constexpr size_t kDataAlign = T::kAlign;
766 static constexpr size_t kDataSize = T::kSize;
767 template <typename StaticVector>
768 static bool FromFlatbuffer(
James Kuszmaul692780f2023-12-20 14:01:56 -0800769 StaticVector *to, const typename StaticVector::ConstFlatbuffer &from) {
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700770 return to->FromNotInlineFlatbuffer(from);
771 }
772 template <typename StaticVector>
773 static void ResizeVector(StaticVector *target, size_t size) {
774 target->resize_not_inline(size);
775 }
776};
777// Specialization for "normal" scalar inline data (ints, floats, doubles,
778// enums).
779template <typename T>
780struct InlineWrapper<T, true,
781 typename std::enable_if_t<!std::is_class<T>::value>> {
782 typedef T Type;
783 typedef T ObjectType;
784 typedef T FlatbufferType;
785 typedef T ConstFlatbufferType;
James Kuszmaul6be41022023-12-20 11:55:28 -0800786 typedef T *FlatbufferObjectType;
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700787 static constexpr size_t kDataAlign = alignof(T);
788 static constexpr size_t kDataSize = sizeof(T);
789 template <typename StaticVector>
790 static bool FromFlatbuffer(
James Kuszmaul692780f2023-12-20 14:01:56 -0800791 StaticVector *to, const typename StaticVector::ConstFlatbuffer &from) {
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700792 return to->FromInlineFlatbuffer(from);
793 }
794 template <typename StaticVector>
795 static void ResizeVector(StaticVector *target, size_t size) {
796 target->resize_inline(size, SetZero::kYes);
797 }
798};
799// Specialization for booleans, given that flatbuffers uses uint8_t's for bools.
800template <>
801struct InlineWrapper<bool, true, void> {
802 typedef uint8_t Type;
803 typedef uint8_t ObjectType;
804 typedef uint8_t FlatbufferType;
805 typedef uint8_t ConstFlatbufferType;
James Kuszmaul6be41022023-12-20 11:55:28 -0800806 typedef uint8_t *FlatbufferObjectType;
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700807 static constexpr size_t kDataAlign = 1u;
808 static constexpr size_t kDataSize = 1u;
809 template <typename StaticVector>
810 static bool FromFlatbuffer(
James Kuszmaul692780f2023-12-20 14:01:56 -0800811 StaticVector *to, const typename StaticVector::ConstFlatbuffer &from) {
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700812 return to->FromInlineFlatbuffer(from);
813 }
814 template <typename StaticVector>
815 static void ResizeVector(StaticVector *target, size_t size) {
816 target->resize_inline(size, SetZero::kYes);
817 }
818};
819// Specialization for flatbuffer structs.
820// The flatbuffers codegen uses struct pointers rather than references or the
821// such, so it needs to be treated special.
822template <typename T>
823struct InlineWrapper<T, true,
824 typename std::enable_if_t<std::is_class<T>::value>> {
825 typedef T Type;
826 typedef T ObjectType;
827 typedef T *FlatbufferType;
828 typedef const T *ConstFlatbufferType;
James Kuszmaul6be41022023-12-20 11:55:28 -0800829 typedef T *FlatbufferObjectType;
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700830 static constexpr size_t kDataAlign = alignof(T);
831 static constexpr size_t kDataSize = sizeof(T);
832 template <typename StaticVector>
833 static bool FromFlatbuffer(
James Kuszmaul692780f2023-12-20 14:01:56 -0800834 StaticVector *to, const typename StaticVector::ConstFlatbuffer &from) {
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700835 return to->FromInlineFlatbuffer(from);
836 }
837 template <typename StaticVector>
838 static void ResizeVector(StaticVector *target, size_t size) {
839 target->resize_inline(size, SetZero::kYes);
840 }
841};
842} // namespace internal
843 //
844template <typename T, size_t kStaticLength, bool kInline, size_t kForceAlign,
845 bool kNullTerminate>
846bool Vector<T, kStaticLength, kInline, kForceAlign,
James Kuszmaul692780f2023-12-20 14:01:56 -0800847 kNullTerminate>::FromFlatbuffer(ConstFlatbuffer &vector) {
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700848 return internal::InlineWrapper<T, kInline>::FromFlatbuffer(this, vector);
849}
850
851template <typename T, size_t kStaticLength, bool kInline, size_t kForceAlign,
852 bool kNullTerminate>
853void Vector<T, kStaticLength, kInline, kForceAlign, kNullTerminate>::resize(
854 size_t size) {
855 internal::InlineWrapper<T, kInline>::ResizeVector(this, size);
856}
857
858} // namespace aos::fbs
859#endif // AOS_FLATBUFFERS_STATIC_VECTOR_H_