blob: 360fd1abeb29fe018fac0528ef50f36f68bbb7c0 [file] [log] [blame]
James Kuszmaulb1b2d8e2020-02-21 21:11:46 -08001#include "y2020/control_loops/superstructure/turret/aiming.h"
2
James Kuszmaulb83d6e12020-02-22 20:44:48 -08003#include "y2020/constants.h"
James Kuszmaulb1b2d8e2020-02-21 21:11:46 -08004#include "y2020/control_loops/drivetrain/drivetrain_base.h"
5
6namespace y2020 {
7namespace control_loops {
8namespace superstructure {
9namespace turret {
10
11using frc971::control_loops::Pose;
12
James Kuszmaul3b393d72020-02-26 19:43:51 -080013// Shooting-on-the-fly concept:
14// The current way that we manage shooting-on-the fly endeavors to be reasonably
15// simple, until we get a chance to see how the actual dynamics play out.
16// Essentially, we assume that the robot's velocity will represent a constant
17// offset to the ball's velocity over the entire trajectory to the goal and
18// then offset the target that we are pointing at based on that.
19// Let us assume that, if the robot shoots while not moving, regardless of shot
20// distance, the ball's average speed-over-ground to the target will be a
21// constant s_shot (this implies that if the robot is driving straight towards
22// the target, the actual ball speed-over-ground will be greater than s_shot).
23// We will define things in the robot's coordinate frame. We will be shooting
24// at a target that is at position (target_x, target_y) in the robot frame. The
25// robot is travelling at (v_robot_x, v_robot_y). In order to shoot the ball,
26// we need to generate some virtual target (virtual_x, virtual_y) that we will
27// shoot at as if we were standing still. The total time-of-flight to that
28// target will be t_shot = norm2(virtual_x, virtual_y) / s_shot.
29// we will have virtual_x + v_robot_x * t_shot = target_x, and the same
30// for y. This gives us three equations and three unknowns (virtual_x,
31// virtual_y, and t_shot), and given appropriate assumptions, can be solved
32// analytically. However, doing so is obnoxious and given appropriate functions
33// for t_shot may not be feasible. As such, instead of actually solving the
34// equation analytically, we will use an iterative solution where we maintain
35// a current virtual target estimate. We start with this estimate as if the
36// robot is stationary. We then use this estimate to calculate t_shot, and
37// calculate the next value for the virtual target.
38
James Kuszmaulb1b2d8e2020-02-21 21:11:46 -080039namespace {
James Kuszmaula53c3ac2020-02-22 19:36:01 -080040// The overall length and width of the field, in meters.
41constexpr double kFieldLength = 15.983;
42constexpr double kFieldWidth = 8.212;
43// Height of the center of the port(s) above the ground, in meters.
44constexpr double kPortHeight = 2.494;
45
46// Maximum shot angle at which we will attempt to make the shot into the inner
47// port, in radians. Zero would imply that we could only shoot if we were
48// exactly perpendicular to the target. Larger numbers allow us to aim at the
49// inner port more aggressively, at the risk of being more likely to miss the
50// outer port entirely.
51constexpr double kMaxInnerPortAngle = 20.0 * M_PI / 180.0;
52
53// Distance (in meters) from the edge of the field to the port.
54constexpr double kEdgeOfFieldToPort = 2.404;
55
56// The amount (in meters) that the inner port is set back from the outer port.
57constexpr double kInnerPortBackset = 0.743;
58
James Kuszmaul3b393d72020-02-26 19:43:51 -080059// Average speed-over-ground of the ball on its way to the target. Our current
60// model assumes constant ball velocity regardless of shot distance.
61// TODO(james): Is this an appropriate model? For the outer port it should be
62// good enough that it doesn't really matter, but for the inner port it may be
63// more appropriate to do something more dynamic--however, it is not yet clear
64// how we would best estimate speed-over-ground given a hood angle + shooter
65// speed. Assuming a constant average speed over the course of the trajectory
66// should be reasonable, since all we are trying to do here is calculate an
67// overall time-of-flight (we don't actually care about the ball speed itself).
68constexpr double kBallSpeedOverGround = 15.0; // m/s
James Kuszmaulb83d6e12020-02-22 20:44:48 -080069
James Kuszmaula53c3ac2020-02-22 19:36:01 -080070// Minimum distance that we must be from the inner port in order to attempt the
71// shot--this is to account for the fact that if we are too close to the target,
72// then we won't have a clear shot on the inner port.
73constexpr double kMinimumInnerPortShotDistance = 4.0;
74
James Kuszmaulb83d6e12020-02-22 20:44:48 -080075// Amount of buffer, in radians, to leave to help avoid wrapping. I.e., any time
76// that we are in kAvoidEdges mode, we will keep ourselves at least
77// kAntiWrapBuffer radians away from the hardstops.
78constexpr double kAntiWrapBuffer = 0.2;
79
James Kuszmaul64c13b72020-03-01 11:17:31 -080080// If the turret is at zero, then it will be at this angle relative to pointed
81// straight forwards on the robot.
82constexpr double kTurretZeroOffset = M_PI;
83
James Kuszmaulb83d6e12020-02-22 20:44:48 -080084constexpr double kTurretRange = constants::Values::kTurretRange().range();
85static_assert((kTurretRange - 2.0 * kAntiWrapBuffer) > 2.0 * M_PI,
86 "kAntiWrap buffer should be small enough that we still have 360 "
87 "degrees of range.");
88
James Kuszmaula53c3ac2020-02-22 19:36:01 -080089Pose ReverseSideOfField(Pose target) {
90 *target.mutable_pos() *= -1;
91 target.set_theta(aos::math::NormalizeAngle(target.rel_theta() + M_PI));
92 return target;
93}
94
James Kuszmaulb1b2d8e2020-02-21 21:11:46 -080095flatbuffers::DetachedBuffer MakePrefilledGoal() {
96 flatbuffers::FlatBufferBuilder fbb;
97 fbb.ForceDefaults(true);
98 Aimer::Goal::Builder builder(fbb);
99 builder.add_unsafe_goal(0);
100 builder.add_goal_velocity(0);
101 builder.add_ignore_profile(true);
102 fbb.Finish(builder.Finish());
103 return fbb.Release();
104}
James Kuszmaul3b393d72020-02-26 19:43:51 -0800105
106// This implements the iteration in the described shooting-on-the-fly algorithm.
107// robot_pose: Current robot pose.
108// robot_velocity: Current robot velocity, in the absolute field frame.
109// target_pose: Absolute goal Pose.
110// current_virtual_pose: Current estimate of where we want to shoot at.
111Pose IterateVirtualGoal(const Pose &robot_pose,
112 const Eigen::Vector3d &robot_velocity,
113 const Pose &target_pose,
114 const Pose &current_virtual_pose) {
115 const double air_time =
116 current_virtual_pose.Rebase(&robot_pose).xy_norm() / kBallSpeedOverGround;
117 const Eigen::Vector3d virtual_target =
118 target_pose.abs_pos() - air_time * robot_velocity;
119 return Pose(virtual_target, target_pose.abs_theta());
120}
James Kuszmaulb1b2d8e2020-02-21 21:11:46 -0800121} // namespace
122
James Kuszmaula53c3ac2020-02-22 19:36:01 -0800123Pose InnerPortPose(aos::Alliance alliance) {
124 const Pose target({kFieldLength / 2 + kInnerPortBackset,
125 -kFieldWidth / 2.0 + kEdgeOfFieldToPort, kPortHeight},
126 0.0);
127 if (alliance == aos::Alliance::kRed) {
128 return ReverseSideOfField(target);
129 }
130 return target;
131}
132
133Pose OuterPortPose(aos::Alliance alliance) {
134 Pose target(
135 {kFieldLength / 2, -kFieldWidth / 2.0 + kEdgeOfFieldToPort, kPortHeight},
136 0.0);
137 if (alliance == aos::Alliance::kRed) {
138 return ReverseSideOfField(target);
139 }
140 return target;
141}
142
James Kuszmaulb1b2d8e2020-02-21 21:11:46 -0800143Aimer::Aimer() : goal_(MakePrefilledGoal()) {}
144
James Kuszmaul3b393d72020-02-26 19:43:51 -0800145void Aimer::Update(const Status *status, aos::Alliance alliance,
146 WrapMode wrap_mode, ShotMode shot_mode) {
James Kuszmaulb1b2d8e2020-02-21 21:11:46 -0800147 const Pose robot_pose({status->x(), status->y(), 0}, status->theta());
James Kuszmaula53c3ac2020-02-22 19:36:01 -0800148 const Pose inner_port = InnerPortPose(alliance);
149 const Pose outer_port = OuterPortPose(alliance);
150 const Pose robot_pose_from_inner_port = robot_pose.Rebase(&inner_port);
James Kuszmaul3b393d72020-02-26 19:43:51 -0800151
James Kuszmaulb1b2d8e2020-02-21 21:11:46 -0800152 // TODO(james): This code should probably just be in the localizer and have
153 // xdot/ydot get populated in the status message directly... that way we don't
154 // keep duplicating this math.
155 // Also, this doesn't currently take into account the lateral velocity of the
156 // robot. All of this would be helped by just doing this work in the Localizer
157 // itself.
158 const Eigen::Vector2d linear_angular =
159 drivetrain::GetDrivetrainConfig().Tlr_to_la() *
160 Eigen::Vector2d(status->localizer()->left_velocity(),
161 status->localizer()->right_velocity());
James Kuszmaul3b393d72020-02-26 19:43:51 -0800162 const double xdot = linear_angular(0) * std::cos(status->theta());
163 const double ydot = linear_angular(0) * std::sin(status->theta());
164
165 const double inner_port_angle = robot_pose_from_inner_port.heading();
166 const double inner_port_distance = robot_pose_from_inner_port.xy_norm();
167 aiming_for_inner_port_ =
168 (std::abs(inner_port_angle) < kMaxInnerPortAngle) &&
169 (inner_port_distance > kMinimumInnerPortShotDistance);
170
171 // This code manages compensating the goal turret heading for the robot's
172 // current velocity, to allow for shooting on-the-fly.
173 // This works by solving for the correct turret angle numerically, since while
174 // we technically could do it analytically, doing so would both make it hard
175 // to make small changes (since it would force us to redo the math) and be
176 // error-prone since it'd be easy to make typos or other minor math errors.
177 Pose virtual_goal;
178 {
179 const Pose goal = aiming_for_inner_port_ ? inner_port : outer_port;
180 virtual_goal = goal;
181 if (shot_mode == ShotMode::kShootOnTheFly) {
182 for (int ii = 0; ii < 3; ++ii) {
183 virtual_goal =
184 IterateVirtualGoal(robot_pose, {xdot, ydot, 0}, goal, virtual_goal);
185 }
186 VLOG(1) << "Shooting-on-the-fly target position: "
187 << virtual_goal.abs_pos().transpose();
188 }
189 virtual_goal = virtual_goal.Rebase(&robot_pose);
190 }
191
192 const double heading_to_goal = virtual_goal.heading();
193 CHECK(status->has_localizer());
194 distance_ = virtual_goal.xy_norm();
195
196 // The following code all works to calculate what the rate of turn of the
197 // turret should be. The code only accounts for the rate of turn if we are
198 // aiming at a static target, which should be close enough to correct that it
199 // doesn't matter that it fails to account for the
200 // shooting-on-the-fly compensation.
201 const double rel_x = virtual_goal.rel_pos().x();
202 const double rel_y = virtual_goal.rel_pos().y();
James Kuszmaulb1b2d8e2020-02-21 21:11:46 -0800203 const double squared_norm = rel_x * rel_x + rel_y * rel_y;
James Kuszmaul3b393d72020-02-26 19:43:51 -0800204
James Kuszmaulb1b2d8e2020-02-21 21:11:46 -0800205 // If squared_norm gets to be too close to zero, just zero out the relevant
206 // term to prevent NaNs. Note that this doesn't address the chattering that
207 // would likely occur if we were to get excessively close to the target.
James Kuszmaul3b393d72020-02-26 19:43:51 -0800208 // Note that x and y terms are swapped relative to what you would normally see
209 // in the derivative of atan because xdot and ydot are the derivatives of
210 // robot_pos and we are working with the atan of (target_pos - robot_pos).
James Kuszmaulb1b2d8e2020-02-21 21:11:46 -0800211 const double atan_diff = (squared_norm < 1e-3)
212 ? 0.0
James Kuszmaul3b393d72020-02-26 19:43:51 -0800213 : (rel_y * xdot - rel_x * ydot) / squared_norm;
James Kuszmaulb1b2d8e2020-02-21 21:11:46 -0800214 // heading = atan2(relative_y, relative_x) - robot_theta
215 // dheading / dt = (rel_x * rel_y' - rel_y * rel_x') / (rel_x^2 + rel_y^2) - dtheta / dt
216 const double dheading_dt = atan_diff - linear_angular(1);
217
James Kuszmaulb83d6e12020-02-22 20:44:48 -0800218 double range = kTurretRange;
James Kuszmaul3b393d72020-02-26 19:43:51 -0800219 if (wrap_mode == WrapMode::kAvoidEdges) {
James Kuszmaulb83d6e12020-02-22 20:44:48 -0800220 range -= 2.0 * kAntiWrapBuffer;
221 }
222 // Calculate a goal turret heading such that it is within +/- pi of the
223 // current position (i.e., a goal that would minimize the amount the turret
224 // would have to travel).
225 // We then check if this goal would bring us out of range of the valid angles,
226 // and if it would, we reset to be within +/- pi of zero.
James Kuszmaul64c13b72020-03-01 11:17:31 -0800227 double turret_heading =
228 goal_.message().unsafe_goal() +
229 aos::math::NormalizeAngle(heading_to_goal - kTurretZeroOffset -
230 goal_.message().unsafe_goal());
James Kuszmaulb83d6e12020-02-22 20:44:48 -0800231 if (std::abs(turret_heading - constants::Values::kTurretRange().middle()) >
232 range / 2.0) {
233 turret_heading = aos::math::NormalizeAngle(turret_heading);
234 }
235
236 goal_.mutable_message()->mutate_unsafe_goal(turret_heading);
James Kuszmaulb1b2d8e2020-02-21 21:11:46 -0800237 goal_.mutable_message()->mutate_goal_velocity(dheading_dt);
238}
239
240flatbuffers::Offset<AimerStatus> Aimer::PopulateStatus(
241 flatbuffers::FlatBufferBuilder *fbb) const {
242 AimerStatus::Builder builder(*fbb);
243 builder.add_turret_position(goal_.message().unsafe_goal());
244 builder.add_turret_velocity(goal_.message().goal_velocity());
James Kuszmaula53c3ac2020-02-22 19:36:01 -0800245 builder.add_aiming_for_inner_port(aiming_for_inner_port_);
James Kuszmaulb1b2d8e2020-02-21 21:11:46 -0800246 return builder.Finish();
247}
248
249} // namespace turret
250} // namespace superstructure
251} // namespace control_loops
252} // namespace y2020