blob: 846fc3907032b4df2a983f29e4109109ed50b264 [file] [log] [blame]
Sabina Davis5ae0c7c2017-10-21 20:51:55 -07001#!/usr/bin/python
2
3from frc971.control_loops.python import control_loop
4from frc971.control_loops.python import controls
5import numpy
6import sys
7from matplotlib import pylab
8
9import gflags
10import glog
11
12FLAGS = gflags.FLAGS
13
14gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
15
16
17class Drivetrain(control_loop.ControlLoop):
18 def __init__(self, name="Drivetrain", left_low=True, right_low=True):
19 super(Drivetrain, self).__init__(name)
20 # Number of motors per side
21 self.num_motors = 2
22 # Stall Torque in N m
23 self.stall_torque = 2.42 * self.num_motors * 0.60
24 # Stall Current in Amps
25 self.stall_current = 133.0 * self.num_motors
26 self.free_speed_rpm = 5500.0
27 # Free Speed in rotations/second.
28 self.free_speed = self.free_speed_rpm / 60
29 # Free Current in Amps
30 self.free_current = 2.7 * self.num_motors
31 #TODO(Neil): Update robot moment of inertia, mass, and robot radius
32 # Moment of inertia of the drivetrain in kg m^2
33 self.J = 6.0
34 # Mass of the robot, in kg.
35 self.m = 52
36 # Radius of the robot, in meters (requires tuning by hand)
37 self.rb = 0.59055 / 2.0
38 # Radius of the wheels, in meters.
39 self.r = 4 * 0.0254 / 2
40 # Resistance of the motor, divided by the number of motors.
41 self.resistance = 12.0 / self.stall_current
42 # Motor velocity constant
43 self.Kv = ((self.free_speed * 2.0 * numpy.pi) /
44 (12.0 - self.resistance * self.free_current))
45 # Torque constant
46 self.Kt = self.stall_torque / self.stall_current
47 # Gear ratios
48 self.G_low = 14.0 / 40.0 * 24.0 / 60.0 * 52.0 / 60.0
49 self.G_high = 14.0 / 40.0 * 34.0 / 50.0 * 52.0 / 60.0
50 if left_low:
51 self.Gl = self.G_low
52 else:
53 self.Gl = self.G_high
54 if right_low:
55 self.Gr = self.G_low
56 else:
57 self.Gr = self.G_high
58
59 # Control loop time step
60 self.dt = 0.00505
61
62 # These describe the way that a given side of a robot will be influenced
63 # by the other side. Units of 1 / kg.
64 self.msp = 1.0 / self.m + self.rb * self.rb / self.J
65 self.msn = 1.0 / self.m - self.rb * self.rb / self.J
66 # The calculations which we will need for A and B.
67 self.tcl = -self.Kt / self.Kv / (self.Gl * self.Gl * self.resistance * self.r * self.r)
68 self.tcr = -self.Kt / self.Kv / (self.Gr * self.Gr * self.resistance * self.r * self.r)
69 self.mpl = self.Kt / (self.Gl * self.resistance * self.r)
70 self.mpr = self.Kt / (self.Gr * self.resistance * self.r)
71
72 # State feedback matrices
73 # X will be of the format
74 # [[positionl], [velocityl], [positionr], velocityr]]
75 self.A_continuous = numpy.matrix(
76 [[0, 1, 0, 0],
77 [0, self.msp * self.tcl, 0, self.msn * self.tcr],
78 [0, 0, 0, 1],
79 [0, self.msn * self.tcl, 0, self.msp * self.tcr]])
80 self.B_continuous = numpy.matrix(
81 [[0, 0],
82 [self.msp * self.mpl, self.msn * self.mpr],
83 [0, 0],
84 [self.msn * self.mpl, self.msp * self.mpr]])
85 self.C = numpy.matrix([[1, 0, 0, 0],
86 [0, 0, 1, 0]])
87 self.D = numpy.matrix([[0, 0],
88 [0, 0]])
89
90 self.A, self.B = self.ContinuousToDiscrete(
91 self.A_continuous, self.B_continuous, self.dt)
92
93 if left_low or right_low:
94 q_pos = 0.12
95 q_vel = 1.0
96 else:
97 q_pos = 0.14
98 q_vel = 0.95
99
100 # Tune the LQR controller
101 self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0, 0.0, 0.0],
102 [0.0, (1.0 / (q_vel ** 2.0)), 0.0, 0.0],
103 [0.0, 0.0, (1.0 / (q_pos ** 2.0)), 0.0],
104 [0.0, 0.0, 0.0, (1.0 / (q_vel ** 2.0))]])
105
106 self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0)), 0.0],
107 [0.0, (1.0 / (12.0 ** 2.0))]])
108 self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
109
110 glog.debug('DT q_pos %f q_vel %s %s', q_pos, q_vel, name)
111 glog.debug(str(numpy.linalg.eig(self.A - self.B * self.K)[0]))
112 glog.debug('K %s', repr(self.K))
113
114 self.hlp = 0.3
115 self.llp = 0.4
116 self.PlaceObserverPoles([self.hlp, self.hlp, self.llp, self.llp])
117
118 self.U_max = numpy.matrix([[12.0], [12.0]])
119 self.U_min = numpy.matrix([[-12.0], [-12.0]])
120
121 self.InitializeState()
122
123
124class KFDrivetrain(Drivetrain):
125 def __init__(self, name="KFDrivetrain", left_low=True, right_low=True):
126 super(KFDrivetrain, self).__init__(name, left_low, right_low)
127
128 self.unaugmented_A_continuous = self.A_continuous
129 self.unaugmented_B_continuous = self.B_continuous
130
131 # The practical voltage applied to the wheels is
132 # V_left = U_left + left_voltage_error
133 #
134 # The states are
135 # [left position, left velocity, right position, right velocity,
136 # left voltage error, right voltage error, angular_error]
137 #
138 # The left and right positions are filtered encoder positions and are not
139 # adjusted for heading error.
140 # The turn velocity as computed by the left and right velocities is
141 # adjusted by the gyro velocity.
142 # The angular_error is the angular velocity error between the wheel speed
143 # and the gyro speed.
144 self.A_continuous = numpy.matrix(numpy.zeros((7, 7)))
145 self.B_continuous = numpy.matrix(numpy.zeros((7, 2)))
146 self.A_continuous[0:4,0:4] = self.unaugmented_A_continuous
147 self.A_continuous[0:4,4:6] = self.unaugmented_B_continuous
148 self.B_continuous[0:4,0:2] = self.unaugmented_B_continuous
149 self.A_continuous[0,6] = 1
150 self.A_continuous[2,6] = -1
151
152 self.A, self.B = self.ContinuousToDiscrete(
153 self.A_continuous, self.B_continuous, self.dt)
154
155 self.C = numpy.matrix([[1, 0, 0, 0, 0, 0, 0],
156 [0, 0, 1, 0, 0, 0, 0],
157 [0, -0.5 / self.rb, 0, 0.5 / self.rb, 0, 0, 0]])
158
159 self.D = numpy.matrix([[0, 0],
160 [0, 0],
161 [0, 0]])
162
163 q_pos = 0.05
164 q_vel = 1.00
165 q_voltage = 10.0
166 q_encoder_uncertainty = 2.00
167
168 self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
169 [0.0, (q_vel ** 2.0), 0.0, 0.0, 0.0, 0.0, 0.0],
170 [0.0, 0.0, (q_pos ** 2.0), 0.0, 0.0, 0.0, 0.0],
171 [0.0, 0.0, 0.0, (q_vel ** 2.0), 0.0, 0.0, 0.0],
172 [0.0, 0.0, 0.0, 0.0, (q_voltage ** 2.0), 0.0, 0.0],
173 [0.0, 0.0, 0.0, 0.0, 0.0, (q_voltage ** 2.0), 0.0],
174 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, (q_encoder_uncertainty ** 2.0)]])
175
176 r_pos = 0.0001
177 r_gyro = 0.000001
178 self.R = numpy.matrix([[(r_pos ** 2.0), 0.0, 0.0],
179 [0.0, (r_pos ** 2.0), 0.0],
180 [0.0, 0.0, (r_gyro ** 2.0)]])
181
182 # Solving for kf gains.
183 self.KalmanGain, self.Q_steady = controls.kalman(
184 A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
185
186 self.L = self.A * self.KalmanGain
187
188 unaug_K = self.K
189
190 # Implement a nice closed loop controller for use by the closed loop
191 # controller.
192 self.K = numpy.matrix(numpy.zeros((self.B.shape[1], self.A.shape[0])))
193 self.K[0:2, 0:4] = unaug_K
194 self.K[0, 4] = 1.0
195 self.K[1, 5] = 1.0
196
197 self.Qff = numpy.matrix(numpy.zeros((4, 4)))
198 qff_pos = 0.005
199 qff_vel = 1.00
200 self.Qff[0, 0] = 1.0 / qff_pos ** 2.0
201 self.Qff[1, 1] = 1.0 / qff_vel ** 2.0
202 self.Qff[2, 2] = 1.0 / qff_pos ** 2.0
203 self.Qff[3, 3] = 1.0 / qff_vel ** 2.0
204 self.Kff = numpy.matrix(numpy.zeros((2, 7)))
205 self.Kff[0:2, 0:4] = controls.TwoStateFeedForwards(self.B[0:4,:], self.Qff)
206
207 self.InitializeState()
208
209
210def main(argv):
211 argv = FLAGS(argv)
212 glog.init()
213
214 # Simulate the response of the system to a step input.
215 drivetrain = Drivetrain(left_low=False, right_low=False)
216 simulated_left = []
217 simulated_right = []
218 for _ in xrange(100):
219 drivetrain.Update(numpy.matrix([[12.0], [12.0]]))
220 simulated_left.append(drivetrain.X[0, 0])
221 simulated_right.append(drivetrain.X[2, 0])
222
223 if FLAGS.plot:
224 pylab.plot(range(100), simulated_left)
225 pylab.plot(range(100), simulated_right)
226 pylab.suptitle('Acceleration Test')
227 pylab.show()
228
229 # Simulate forwards motion.
230 drivetrain = Drivetrain(left_low=False, right_low=False)
231 close_loop_left = []
232 close_loop_right = []
233 left_power = []
234 right_power = []
235 R = numpy.matrix([[1.0], [0.0], [1.0], [0.0]])
236 for _ in xrange(300):
237 U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
238 drivetrain.U_min, drivetrain.U_max)
239 drivetrain.UpdateObserver(U)
240 drivetrain.Update(U)
241 close_loop_left.append(drivetrain.X[0, 0])
242 close_loop_right.append(drivetrain.X[2, 0])
243 left_power.append(U[0, 0])
244 right_power.append(U[1, 0])
245
246 if FLAGS.plot:
247 pylab.plot(range(300), close_loop_left, label='left position')
248 pylab.plot(range(300), close_loop_right, label='right position')
249 pylab.plot(range(300), left_power, label='left power')
250 pylab.plot(range(300), right_power, label='right power')
251 pylab.suptitle('Linear Move')
252 pylab.legend()
253 pylab.show()
254
255 # Try turning in place
256 drivetrain = Drivetrain()
257 close_loop_left = []
258 close_loop_right = []
259 R = numpy.matrix([[-1.0], [0.0], [1.0], [0.0]])
260 for _ in xrange(100):
261 U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
262 drivetrain.U_min, drivetrain.U_max)
263 drivetrain.UpdateObserver(U)
264 drivetrain.Update(U)
265 close_loop_left.append(drivetrain.X[0, 0])
266 close_loop_right.append(drivetrain.X[2, 0])
267
268 if FLAGS.plot:
269 pylab.plot(range(100), close_loop_left)
270 pylab.plot(range(100), close_loop_right)
271 pylab.suptitle('Angular Move')
272 pylab.show()
273
274 # Try turning just one side.
275 drivetrain = Drivetrain()
276 close_loop_left = []
277 close_loop_right = []
278 R = numpy.matrix([[0.0], [0.0], [1.0], [0.0]])
279 for _ in xrange(100):
280 U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
281 drivetrain.U_min, drivetrain.U_max)
282 drivetrain.UpdateObserver(U)
283 drivetrain.Update(U)
284 close_loop_left.append(drivetrain.X[0, 0])
285 close_loop_right.append(drivetrain.X[2, 0])
286
287 if FLAGS.plot:
288 pylab.plot(range(100), close_loop_left)
289 pylab.plot(range(100), close_loop_right)
290 pylab.suptitle('Pivot')
291 pylab.show()
292
293 # Write the generated constants out to a file.
294 drivetrain_low_low = Drivetrain(
295 name="DrivetrainLowLow", left_low=True, right_low=True)
296 drivetrain_low_high = Drivetrain(
297 name="DrivetrainLowHigh", left_low=True, right_low=False)
298 drivetrain_high_low = Drivetrain(
299 name="DrivetrainHighLow", left_low=False, right_low=True)
300 drivetrain_high_high = Drivetrain(
301 name="DrivetrainHighHigh", left_low=False, right_low=False)
302
303 kf_drivetrain_low_low = KFDrivetrain(
304 name="KFDrivetrainLowLow", left_low=True, right_low=True)
305 kf_drivetrain_low_high = KFDrivetrain(
306 name="KFDrivetrainLowHigh", left_low=True, right_low=False)
307 kf_drivetrain_high_low = KFDrivetrain(
308 name="KFDrivetrainHighLow", left_low=False, right_low=True)
309 kf_drivetrain_high_high = KFDrivetrain(
310 name="KFDrivetrainHighHigh", left_low=False, right_low=False)
311
312 if len(argv) != 5:
313 print "Expected .h file name and .cc file name"
314 else:
315 namespaces = ['y2017_bot3', 'control_loops', 'drivetrain']
316 dog_loop_writer = control_loop.ControlLoopWriter(
317 "Drivetrain", [drivetrain_low_low, drivetrain_low_high,
318 drivetrain_high_low, drivetrain_high_high],
319 namespaces = namespaces)
320 dog_loop_writer.AddConstant(control_loop.Constant("kDt", "%f",
321 drivetrain_low_low.dt))
322 dog_loop_writer.AddConstant(control_loop.Constant("kStallTorque", "%f",
323 drivetrain_low_low.stall_torque))
324 dog_loop_writer.AddConstant(control_loop.Constant("kStallCurrent", "%f",
325 drivetrain_low_low.stall_current))
326 dog_loop_writer.AddConstant(control_loop.Constant("kFreeSpeed", "%f",
327 drivetrain_low_low.free_speed))
328 dog_loop_writer.AddConstant(control_loop.Constant("kFreeCurrent", "%f",
329 drivetrain_low_low.free_current))
330 dog_loop_writer.AddConstant(control_loop.Constant("kJ", "%f",
331 drivetrain_low_low.J))
332 dog_loop_writer.AddConstant(control_loop.Constant("kMass", "%f",
333 drivetrain_low_low.m))
334 dog_loop_writer.AddConstant(control_loop.Constant("kRobotRadius", "%f",
335 drivetrain_low_low.rb))
336 dog_loop_writer.AddConstant(control_loop.Constant("kWheelRadius", "%f",
337 drivetrain_low_low.r))
338 dog_loop_writer.AddConstant(control_loop.Constant("kR", "%f",
339 drivetrain_low_low.resistance))
340 dog_loop_writer.AddConstant(control_loop.Constant("kV", "%f",
341 drivetrain_low_low.Kv))
342 dog_loop_writer.AddConstant(control_loop.Constant("kT", "%f",
343 drivetrain_low_low.Kt))
344 dog_loop_writer.AddConstant(control_loop.Constant("kLowGearRatio", "%f",
345 drivetrain_low_low.G_low))
346 dog_loop_writer.AddConstant(control_loop.Constant("kHighGearRatio", "%f",
347 drivetrain_high_high.G_high))
348 dog_loop_writer.AddConstant(control_loop.Constant("kHighOutputRatio", "%f",
349 drivetrain_high_high.G_high * drivetrain_high_high.r))
350
351 dog_loop_writer.Write(argv[1], argv[2])
352
353 kf_loop_writer = control_loop.ControlLoopWriter(
354 "KFDrivetrain", [kf_drivetrain_low_low, kf_drivetrain_low_high,
355 kf_drivetrain_high_low, kf_drivetrain_high_high],
356 namespaces = namespaces)
357 kf_loop_writer.Write(argv[3], argv[4])
358
359if __name__ == '__main__':
360 sys.exit(main(sys.argv))