Austin Schuh | 0cbef62 | 2015-09-06 17:34:52 -0700 | [diff] [blame] | 1 | // Copyright 2007, Google Inc. |
| 2 | // All rights reserved. |
| 3 | // |
| 4 | // Redistribution and use in source and binary forms, with or without |
| 5 | // modification, are permitted provided that the following conditions are |
| 6 | // met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright |
| 9 | // notice, this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above |
| 11 | // copyright notice, this list of conditions and the following disclaimer |
| 12 | // in the documentation and/or other materials provided with the |
| 13 | // distribution. |
| 14 | // * Neither the name of Google Inc. nor the names of its |
| 15 | // contributors may be used to endorse or promote products derived from |
| 16 | // this software without specific prior written permission. |
| 17 | // |
| 18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 29 | // |
| 30 | // Author: wan@google.com (Zhanyong Wan) |
| 31 | |
| 32 | // Google Mock - a framework for writing C++ mock classes. |
| 33 | // |
| 34 | // This file implements Matcher<const string&>, Matcher<string>, and |
| 35 | // utilities for defining matchers. |
| 36 | |
| 37 | #include "gmock/gmock-matchers.h" |
| 38 | #include "gmock/gmock-generated-matchers.h" |
| 39 | |
| 40 | #include <string.h> |
| 41 | #include <sstream> |
| 42 | #include <string> |
| 43 | |
| 44 | namespace testing { |
| 45 | |
| 46 | // Constructs a matcher that matches a const string& whose value is |
| 47 | // equal to s. |
| 48 | Matcher<const internal::string&>::Matcher(const internal::string& s) { |
| 49 | *this = Eq(s); |
| 50 | } |
| 51 | |
| 52 | // Constructs a matcher that matches a const string& whose value is |
| 53 | // equal to s. |
| 54 | Matcher<const internal::string&>::Matcher(const char* s) { |
| 55 | *this = Eq(internal::string(s)); |
| 56 | } |
| 57 | |
| 58 | // Constructs a matcher that matches a string whose value is equal to s. |
| 59 | Matcher<internal::string>::Matcher(const internal::string& s) { *this = Eq(s); } |
| 60 | |
| 61 | // Constructs a matcher that matches a string whose value is equal to s. |
| 62 | Matcher<internal::string>::Matcher(const char* s) { |
| 63 | *this = Eq(internal::string(s)); |
| 64 | } |
| 65 | |
| 66 | #if GTEST_HAS_STRING_PIECE_ |
| 67 | // Constructs a matcher that matches a const StringPiece& whose value is |
| 68 | // equal to s. |
| 69 | Matcher<const StringPiece&>::Matcher(const internal::string& s) { |
| 70 | *this = Eq(s); |
| 71 | } |
| 72 | |
| 73 | // Constructs a matcher that matches a const StringPiece& whose value is |
| 74 | // equal to s. |
| 75 | Matcher<const StringPiece&>::Matcher(const char* s) { |
| 76 | *this = Eq(internal::string(s)); |
| 77 | } |
| 78 | |
| 79 | // Constructs a matcher that matches a const StringPiece& whose value is |
| 80 | // equal to s. |
| 81 | Matcher<const StringPiece&>::Matcher(StringPiece s) { |
| 82 | *this = Eq(s.ToString()); |
| 83 | } |
| 84 | |
| 85 | // Constructs a matcher that matches a StringPiece whose value is equal to s. |
| 86 | Matcher<StringPiece>::Matcher(const internal::string& s) { |
| 87 | *this = Eq(s); |
| 88 | } |
| 89 | |
| 90 | // Constructs a matcher that matches a StringPiece whose value is equal to s. |
| 91 | Matcher<StringPiece>::Matcher(const char* s) { |
| 92 | *this = Eq(internal::string(s)); |
| 93 | } |
| 94 | |
| 95 | // Constructs a matcher that matches a StringPiece whose value is equal to s. |
| 96 | Matcher<StringPiece>::Matcher(StringPiece s) { |
| 97 | *this = Eq(s.ToString()); |
| 98 | } |
| 99 | #endif // GTEST_HAS_STRING_PIECE_ |
| 100 | |
| 101 | namespace internal { |
| 102 | |
| 103 | // Joins a vector of strings as if they are fields of a tuple; returns |
| 104 | // the joined string. |
| 105 | GTEST_API_ string JoinAsTuple(const Strings& fields) { |
| 106 | switch (fields.size()) { |
| 107 | case 0: |
| 108 | return ""; |
| 109 | case 1: |
| 110 | return fields[0]; |
| 111 | default: |
| 112 | string result = "(" + fields[0]; |
| 113 | for (size_t i = 1; i < fields.size(); i++) { |
| 114 | result += ", "; |
| 115 | result += fields[i]; |
| 116 | } |
| 117 | result += ")"; |
| 118 | return result; |
| 119 | } |
| 120 | } |
| 121 | |
| 122 | // Returns the description for a matcher defined using the MATCHER*() |
| 123 | // macro where the user-supplied description string is "", if |
| 124 | // 'negation' is false; otherwise returns the description of the |
| 125 | // negation of the matcher. 'param_values' contains a list of strings |
| 126 | // that are the print-out of the matcher's parameters. |
| 127 | GTEST_API_ string FormatMatcherDescription(bool negation, |
| 128 | const char* matcher_name, |
| 129 | const Strings& param_values) { |
| 130 | string result = ConvertIdentifierNameToWords(matcher_name); |
| 131 | if (param_values.size() >= 1) |
| 132 | result += " " + JoinAsTuple(param_values); |
| 133 | return negation ? "not (" + result + ")" : result; |
| 134 | } |
| 135 | |
| 136 | // FindMaxBipartiteMatching and its helper class. |
| 137 | // |
| 138 | // Uses the well-known Ford-Fulkerson max flow method to find a maximum |
| 139 | // bipartite matching. Flow is considered to be from left to right. |
| 140 | // There is an implicit source node that is connected to all of the left |
| 141 | // nodes, and an implicit sink node that is connected to all of the |
| 142 | // right nodes. All edges have unit capacity. |
| 143 | // |
| 144 | // Neither the flow graph nor the residual flow graph are represented |
| 145 | // explicitly. Instead, they are implied by the information in 'graph' and |
| 146 | // a vector<int> called 'left_' whose elements are initialized to the |
| 147 | // value kUnused. This represents the initial state of the algorithm, |
| 148 | // where the flow graph is empty, and the residual flow graph has the |
| 149 | // following edges: |
| 150 | // - An edge from source to each left_ node |
| 151 | // - An edge from each right_ node to sink |
| 152 | // - An edge from each left_ node to each right_ node, if the |
| 153 | // corresponding edge exists in 'graph'. |
| 154 | // |
| 155 | // When the TryAugment() method adds a flow, it sets left_[l] = r for some |
| 156 | // nodes l and r. This induces the following changes: |
| 157 | // - The edges (source, l), (l, r), and (r, sink) are added to the |
| 158 | // flow graph. |
| 159 | // - The same three edges are removed from the residual flow graph. |
| 160 | // - The reverse edges (l, source), (r, l), and (sink, r) are added |
| 161 | // to the residual flow graph, which is a directional graph |
| 162 | // representing unused flow capacity. |
| 163 | // |
| 164 | // When the method augments a flow (moving left_[l] from some r1 to some |
| 165 | // other r2), this can be thought of as "undoing" the above steps with |
| 166 | // respect to r1 and "redoing" them with respect to r2. |
| 167 | // |
| 168 | // It bears repeating that the flow graph and residual flow graph are |
| 169 | // never represented explicitly, but can be derived by looking at the |
| 170 | // information in 'graph' and in left_. |
| 171 | // |
| 172 | // As an optimization, there is a second vector<int> called right_ which |
| 173 | // does not provide any new information. Instead, it enables more |
| 174 | // efficient queries about edges entering or leaving the right-side nodes |
| 175 | // of the flow or residual flow graphs. The following invariants are |
| 176 | // maintained: |
| 177 | // |
| 178 | // left[l] == kUnused or right[left[l]] == l |
| 179 | // right[r] == kUnused or left[right[r]] == r |
| 180 | // |
| 181 | // . [ source ] . |
| 182 | // . ||| . |
| 183 | // . ||| . |
| 184 | // . ||\--> left[0]=1 ---\ right[0]=-1 ----\ . |
| 185 | // . || | | . |
| 186 | // . |\---> left[1]=-1 \--> right[1]=0 ---\| . |
| 187 | // . | || . |
| 188 | // . \----> left[2]=2 ------> right[2]=2 --\|| . |
| 189 | // . ||| . |
| 190 | // . elements matchers vvv . |
| 191 | // . [ sink ] . |
| 192 | // |
| 193 | // See Also: |
| 194 | // [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method". |
| 195 | // "Introduction to Algorithms (Second ed.)", pp. 651-664. |
| 196 | // [2] "Ford-Fulkerson algorithm", Wikipedia, |
| 197 | // 'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm' |
| 198 | class MaxBipartiteMatchState { |
| 199 | public: |
| 200 | explicit MaxBipartiteMatchState(const MatchMatrix& graph) |
| 201 | : graph_(&graph), |
| 202 | left_(graph_->LhsSize(), kUnused), |
| 203 | right_(graph_->RhsSize(), kUnused) { |
| 204 | } |
| 205 | |
| 206 | // Returns the edges of a maximal match, each in the form {left, right}. |
| 207 | ElementMatcherPairs Compute() { |
| 208 | // 'seen' is used for path finding { 0: unseen, 1: seen }. |
| 209 | ::std::vector<char> seen; |
| 210 | // Searches the residual flow graph for a path from each left node to |
| 211 | // the sink in the residual flow graph, and if one is found, add flow |
| 212 | // to the graph. It's okay to search through the left nodes once. The |
| 213 | // edge from the implicit source node to each previously-visited left |
| 214 | // node will have flow if that left node has any path to the sink |
| 215 | // whatsoever. Subsequent augmentations can only add flow to the |
| 216 | // network, and cannot take away that previous flow unit from the source. |
| 217 | // Since the source-to-left edge can only carry one flow unit (or, |
| 218 | // each element can be matched to only one matcher), there is no need |
| 219 | // to visit the left nodes more than once looking for augmented paths. |
| 220 | // The flow is known to be possible or impossible by looking at the |
| 221 | // node once. |
| 222 | for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) { |
| 223 | // Reset the path-marking vector and try to find a path from |
| 224 | // source to sink starting at the left_[ilhs] node. |
| 225 | GTEST_CHECK_(left_[ilhs] == kUnused) |
| 226 | << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs]; |
| 227 | // 'seen' initialized to 'graph_->RhsSize()' copies of 0. |
| 228 | seen.assign(graph_->RhsSize(), 0); |
| 229 | TryAugment(ilhs, &seen); |
| 230 | } |
| 231 | ElementMatcherPairs result; |
| 232 | for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) { |
| 233 | size_t irhs = left_[ilhs]; |
| 234 | if (irhs == kUnused) continue; |
| 235 | result.push_back(ElementMatcherPair(ilhs, irhs)); |
| 236 | } |
| 237 | return result; |
| 238 | } |
| 239 | |
| 240 | private: |
| 241 | static const size_t kUnused = static_cast<size_t>(-1); |
| 242 | |
| 243 | // Perform a depth-first search from left node ilhs to the sink. If a |
| 244 | // path is found, flow is added to the network by linking the left and |
| 245 | // right vector elements corresponding each segment of the path. |
| 246 | // Returns true if a path to sink was found, which means that a unit of |
| 247 | // flow was added to the network. The 'seen' vector elements correspond |
| 248 | // to right nodes and are marked to eliminate cycles from the search. |
| 249 | // |
| 250 | // Left nodes will only be explored at most once because they |
| 251 | // are accessible from at most one right node in the residual flow |
| 252 | // graph. |
| 253 | // |
| 254 | // Note that left_[ilhs] is the only element of left_ that TryAugment will |
| 255 | // potentially transition from kUnused to another value. Any other |
| 256 | // left_ element holding kUnused before TryAugment will be holding it |
| 257 | // when TryAugment returns. |
| 258 | // |
| 259 | bool TryAugment(size_t ilhs, ::std::vector<char>* seen) { |
| 260 | for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) { |
| 261 | if ((*seen)[irhs]) |
| 262 | continue; |
| 263 | if (!graph_->HasEdge(ilhs, irhs)) |
| 264 | continue; |
| 265 | // There's an available edge from ilhs to irhs. |
| 266 | (*seen)[irhs] = 1; |
| 267 | // Next a search is performed to determine whether |
| 268 | // this edge is a dead end or leads to the sink. |
| 269 | // |
| 270 | // right_[irhs] == kUnused means that there is residual flow from |
| 271 | // right node irhs to the sink, so we can use that to finish this |
| 272 | // flow path and return success. |
| 273 | // |
| 274 | // Otherwise there is residual flow to some ilhs. We push flow |
| 275 | // along that path and call ourselves recursively to see if this |
| 276 | // ultimately leads to sink. |
| 277 | if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) { |
| 278 | // Add flow from left_[ilhs] to right_[irhs]. |
| 279 | left_[ilhs] = irhs; |
| 280 | right_[irhs] = ilhs; |
| 281 | return true; |
| 282 | } |
| 283 | } |
| 284 | return false; |
| 285 | } |
| 286 | |
| 287 | const MatchMatrix* graph_; // not owned |
| 288 | // Each element of the left_ vector represents a left hand side node |
| 289 | // (i.e. an element) and each element of right_ is a right hand side |
| 290 | // node (i.e. a matcher). The values in the left_ vector indicate |
| 291 | // outflow from that node to a node on the the right_ side. The values |
| 292 | // in the right_ indicate inflow, and specify which left_ node is |
| 293 | // feeding that right_ node, if any. For example, left_[3] == 1 means |
| 294 | // there's a flow from element #3 to matcher #1. Such a flow would also |
| 295 | // be redundantly represented in the right_ vector as right_[1] == 3. |
| 296 | // Elements of left_ and right_ are either kUnused or mutually |
| 297 | // referent. Mutually referent means that left_[right_[i]] = i and |
| 298 | // right_[left_[i]] = i. |
| 299 | ::std::vector<size_t> left_; |
| 300 | ::std::vector<size_t> right_; |
| 301 | |
| 302 | GTEST_DISALLOW_ASSIGN_(MaxBipartiteMatchState); |
| 303 | }; |
| 304 | |
| 305 | const size_t MaxBipartiteMatchState::kUnused; |
| 306 | |
| 307 | GTEST_API_ ElementMatcherPairs |
| 308 | FindMaxBipartiteMatching(const MatchMatrix& g) { |
| 309 | return MaxBipartiteMatchState(g).Compute(); |
| 310 | } |
| 311 | |
| 312 | static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs, |
| 313 | ::std::ostream* stream) { |
| 314 | typedef ElementMatcherPairs::const_iterator Iter; |
| 315 | ::std::ostream& os = *stream; |
| 316 | os << "{"; |
| 317 | const char *sep = ""; |
| 318 | for (Iter it = pairs.begin(); it != pairs.end(); ++it) { |
| 319 | os << sep << "\n (" |
| 320 | << "element #" << it->first << ", " |
| 321 | << "matcher #" << it->second << ")"; |
| 322 | sep = ","; |
| 323 | } |
| 324 | os << "\n}"; |
| 325 | } |
| 326 | |
| 327 | // Tries to find a pairing, and explains the result. |
| 328 | GTEST_API_ bool FindPairing(const MatchMatrix& matrix, |
| 329 | MatchResultListener* listener) { |
| 330 | ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix); |
| 331 | |
| 332 | size_t max_flow = matches.size(); |
| 333 | bool result = (max_flow == matrix.RhsSize()); |
| 334 | |
| 335 | if (!result) { |
| 336 | if (listener->IsInterested()) { |
| 337 | *listener << "where no permutation of the elements can " |
| 338 | "satisfy all matchers, and the closest match is " |
| 339 | << max_flow << " of " << matrix.RhsSize() |
| 340 | << " matchers with the pairings:\n"; |
| 341 | LogElementMatcherPairVec(matches, listener->stream()); |
| 342 | } |
| 343 | return false; |
| 344 | } |
| 345 | |
| 346 | if (matches.size() > 1) { |
| 347 | if (listener->IsInterested()) { |
| 348 | const char *sep = "where:\n"; |
| 349 | for (size_t mi = 0; mi < matches.size(); ++mi) { |
| 350 | *listener << sep << " - element #" << matches[mi].first |
| 351 | << " is matched by matcher #" << matches[mi].second; |
| 352 | sep = ",\n"; |
| 353 | } |
| 354 | } |
| 355 | } |
| 356 | return true; |
| 357 | } |
| 358 | |
| 359 | bool MatchMatrix::NextGraph() { |
| 360 | for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) { |
| 361 | for (size_t irhs = 0; irhs < RhsSize(); ++irhs) { |
| 362 | char& b = matched_[SpaceIndex(ilhs, irhs)]; |
| 363 | if (!b) { |
| 364 | b = 1; |
| 365 | return true; |
| 366 | } |
| 367 | b = 0; |
| 368 | } |
| 369 | } |
| 370 | return false; |
| 371 | } |
| 372 | |
| 373 | void MatchMatrix::Randomize() { |
| 374 | for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) { |
| 375 | for (size_t irhs = 0; irhs < RhsSize(); ++irhs) { |
| 376 | char& b = matched_[SpaceIndex(ilhs, irhs)]; |
| 377 | b = static_cast<char>(rand() & 1); // NOLINT |
| 378 | } |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | string MatchMatrix::DebugString() const { |
| 383 | ::std::stringstream ss; |
| 384 | const char *sep = ""; |
| 385 | for (size_t i = 0; i < LhsSize(); ++i) { |
| 386 | ss << sep; |
| 387 | for (size_t j = 0; j < RhsSize(); ++j) { |
| 388 | ss << HasEdge(i, j); |
| 389 | } |
| 390 | sep = ";"; |
| 391 | } |
| 392 | return ss.str(); |
| 393 | } |
| 394 | |
| 395 | void UnorderedElementsAreMatcherImplBase::DescribeToImpl( |
| 396 | ::std::ostream* os) const { |
| 397 | if (matcher_describers_.empty()) { |
| 398 | *os << "is empty"; |
| 399 | return; |
| 400 | } |
| 401 | if (matcher_describers_.size() == 1) { |
| 402 | *os << "has " << Elements(1) << " and that element "; |
| 403 | matcher_describers_[0]->DescribeTo(os); |
| 404 | return; |
| 405 | } |
| 406 | *os << "has " << Elements(matcher_describers_.size()) |
| 407 | << " and there exists some permutation of elements such that:\n"; |
| 408 | const char* sep = ""; |
| 409 | for (size_t i = 0; i != matcher_describers_.size(); ++i) { |
| 410 | *os << sep << " - element #" << i << " "; |
| 411 | matcher_describers_[i]->DescribeTo(os); |
| 412 | sep = ", and\n"; |
| 413 | } |
| 414 | } |
| 415 | |
| 416 | void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl( |
| 417 | ::std::ostream* os) const { |
| 418 | if (matcher_describers_.empty()) { |
| 419 | *os << "isn't empty"; |
| 420 | return; |
| 421 | } |
| 422 | if (matcher_describers_.size() == 1) { |
| 423 | *os << "doesn't have " << Elements(1) |
| 424 | << ", or has " << Elements(1) << " that "; |
| 425 | matcher_describers_[0]->DescribeNegationTo(os); |
| 426 | return; |
| 427 | } |
| 428 | *os << "doesn't have " << Elements(matcher_describers_.size()) |
| 429 | << ", or there exists no permutation of elements such that:\n"; |
| 430 | const char* sep = ""; |
| 431 | for (size_t i = 0; i != matcher_describers_.size(); ++i) { |
| 432 | *os << sep << " - element #" << i << " "; |
| 433 | matcher_describers_[i]->DescribeTo(os); |
| 434 | sep = ", and\n"; |
| 435 | } |
| 436 | } |
| 437 | |
| 438 | // Checks that all matchers match at least one element, and that all |
| 439 | // elements match at least one matcher. This enables faster matching |
| 440 | // and better error reporting. |
| 441 | // Returns false, writing an explanation to 'listener', if and only |
| 442 | // if the success criteria are not met. |
| 443 | bool UnorderedElementsAreMatcherImplBase:: |
| 444 | VerifyAllElementsAndMatchersAreMatched( |
| 445 | const ::std::vector<string>& element_printouts, |
| 446 | const MatchMatrix& matrix, |
| 447 | MatchResultListener* listener) const { |
| 448 | bool result = true; |
| 449 | ::std::vector<char> element_matched(matrix.LhsSize(), 0); |
| 450 | ::std::vector<char> matcher_matched(matrix.RhsSize(), 0); |
| 451 | |
| 452 | for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) { |
| 453 | for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) { |
| 454 | char matched = matrix.HasEdge(ilhs, irhs); |
| 455 | element_matched[ilhs] |= matched; |
| 456 | matcher_matched[irhs] |= matched; |
| 457 | } |
| 458 | } |
| 459 | |
| 460 | { |
| 461 | const char* sep = |
| 462 | "where the following matchers don't match any elements:\n"; |
| 463 | for (size_t mi = 0; mi < matcher_matched.size(); ++mi) { |
| 464 | if (matcher_matched[mi]) |
| 465 | continue; |
| 466 | result = false; |
| 467 | if (listener->IsInterested()) { |
| 468 | *listener << sep << "matcher #" << mi << ": "; |
| 469 | matcher_describers_[mi]->DescribeTo(listener->stream()); |
| 470 | sep = ",\n"; |
| 471 | } |
| 472 | } |
| 473 | } |
| 474 | |
| 475 | { |
| 476 | const char* sep = |
| 477 | "where the following elements don't match any matchers:\n"; |
| 478 | const char* outer_sep = ""; |
| 479 | if (!result) { |
| 480 | outer_sep = "\nand "; |
| 481 | } |
| 482 | for (size_t ei = 0; ei < element_matched.size(); ++ei) { |
| 483 | if (element_matched[ei]) |
| 484 | continue; |
| 485 | result = false; |
| 486 | if (listener->IsInterested()) { |
| 487 | *listener << outer_sep << sep << "element #" << ei << ": " |
| 488 | << element_printouts[ei]; |
| 489 | sep = ",\n"; |
| 490 | outer_sep = ""; |
| 491 | } |
| 492 | } |
| 493 | } |
| 494 | return result; |
| 495 | } |
| 496 | |
| 497 | } // namespace internal |
| 498 | } // namespace testing |