Brian Silverman | 5962333 | 2018-08-04 23:36:56 -0700 | [diff] [blame^] | 1 | |
| 2 | [section:facade_tutorial Tutorial] |
| 3 | |
| 4 | In this section we'll walk through the implementation of a few |
| 5 | iterators using `iterator_facade`, based around the simple |
| 6 | example of a linked list of polymorphic objects. This example was |
| 7 | inspired by a |
| 8 | [@http://thread.gmane.org/gmane.comp.lib.boost.user/5100 `posting`] |
| 9 | by Keith Macdonald on the |
| 10 | [@http://www.boost.org/more/mailing_lists.htm#users `Boost-Users`] |
| 11 | mailing list. |
| 12 | |
| 13 | |
| 14 | [h2 The Problem] |
| 15 | |
| 16 | |
| 17 | Say we've written a polymorphic linked list node base class: |
| 18 | |
| 19 | # include <iostream> |
| 20 | |
| 21 | struct node_base |
| 22 | { |
| 23 | node_base() : m_next(0) {} |
| 24 | |
| 25 | // Each node manages all of its tail nodes |
| 26 | virtual ~node_base() { delete m_next; } |
| 27 | |
| 28 | // Access the rest of the list |
| 29 | node_base* next() const { return m_next; } |
| 30 | |
| 31 | // print to the stream |
| 32 | virtual void print(std::ostream& s) const = 0; |
| 33 | |
| 34 | // double the value |
| 35 | virtual void double_me() = 0; |
| 36 | |
| 37 | void append(node_base* p) |
| 38 | { |
| 39 | if (m_next) |
| 40 | m_next->append(p); |
| 41 | else |
| 42 | m_next = p; |
| 43 | } |
| 44 | |
| 45 | private: |
| 46 | node_base* m_next; |
| 47 | }; |
| 48 | |
| 49 | Lists can hold objects of different types by linking together |
| 50 | specializations of the following template: |
| 51 | |
| 52 | template <class T> |
| 53 | struct node : node_base |
| 54 | { |
| 55 | node(T x) |
| 56 | : m_value(x) |
| 57 | {} |
| 58 | |
| 59 | void print(std::ostream& s) const { s << this->m_value; } |
| 60 | void double_me() { m_value += m_value; } |
| 61 | |
| 62 | private: |
| 63 | T m_value; |
| 64 | }; |
| 65 | |
| 66 | And we can print any node using the following streaming operator: |
| 67 | |
| 68 | inline std::ostream& operator<<(std::ostream& s, node_base const& n) |
| 69 | { |
| 70 | n.print(s); |
| 71 | return s; |
| 72 | } |
| 73 | |
| 74 | Our first challenge is to build an appropriate iterator over these |
| 75 | lists. |
| 76 | |
| 77 | [h2 A Basic Iterator Using `iterator_facade`] |
| 78 | |
| 79 | We will construct a `node_iterator` class using inheritance from |
| 80 | `iterator_facade` to implement most of the iterator's operations. |
| 81 | |
| 82 | |
| 83 | # include "node.hpp" |
| 84 | # include <boost/iterator/iterator_facade.hpp> |
| 85 | |
| 86 | class node_iterator |
| 87 | : public boost::iterator_facade<...> |
| 88 | { |
| 89 | ... |
| 90 | }; |
| 91 | |
| 92 | |
| 93 | |
| 94 | [h2 Template Arguments for `iterator_facade`] |
| 95 | |
| 96 | `iterator_facade` has several template parameters, so we must decide |
| 97 | what types to use for the arguments. The parameters are `Derived`, |
| 98 | `Value`, `CategoryOrTraversal`, `Reference`, and `Difference`. |
| 99 | |
| 100 | |
| 101 | [h3 `Derived`] |
| 102 | |
| 103 | Because `iterator_facade` is meant to be used with the CRTP |
| 104 | [Cop95]_ the first parameter is the iterator class name itself, |
| 105 | `node_iterator`. |
| 106 | |
| 107 | [h3 `Value`] |
| 108 | |
| 109 | The `Value` parameter determines the `node_iterator`\ 's |
| 110 | `value_type`. In this case, we are iterating over `node_base` |
| 111 | objects, so `Value` will be `node_base`. |
| 112 | |
| 113 | |
| 114 | [h3 `CategoryOrTraversal`] |
| 115 | |
| 116 | Now we have to determine which `iterator traversal concept`_ our |
| 117 | `node_iterator` is going to model. Singly-linked lists only have |
| 118 | forward links, so our iterator can't can't be a `bidirectional |
| 119 | traversal iterator`_. Our iterator should be able to make multiple |
| 120 | passes over the same linked list (unlike, say, an |
| 121 | `istream_iterator` which consumes the stream it traverses), so it |
| 122 | must be a `forward traversal iterator`_. Therefore, we'll pass |
| 123 | `boost::forward_traversal_tag` in this position [#category]_. |
| 124 | |
| 125 | .. [#category] `iterator_facade` also supports old-style category |
| 126 | tags, so we could have passed `std::forward_iterator_tag` here; |
| 127 | either way, the resulting iterator's `iterator_category` will |
| 128 | end up being `std::forward_iterator_tag`. |
| 129 | |
| 130 | [h3 `Reference`] |
| 131 | |
| 132 | The `Reference` argument becomes the type returned by |
| 133 | `node_iterator`\ 's dereference operation, and will also be the |
| 134 | same as `std::iterator_traits<node_iterator>::reference`. The |
| 135 | library's default for this parameter is `Value&`; since |
| 136 | `node_base&` is a good choice for the iterator's `reference` |
| 137 | type, we can omit this argument, or pass `use_default`. |
| 138 | |
| 139 | [h3 `Difference`] |
| 140 | |
| 141 | The `Difference` argument determines how the distance between |
| 142 | two `node_iterator`\ s will be measured and will also be the |
| 143 | same as `std::iterator_traits<node_iterator>::difference_type`. |
| 144 | The library's default for `Difference` is `std::ptrdiff_t`, an |
| 145 | appropriate type for measuring the distance between any two |
| 146 | addresses in memory, and one that works for almost any iterator, |
| 147 | so we can omit this argument, too. |
| 148 | |
| 149 | The declaration of `node_iterator` will therefore look something |
| 150 | like: |
| 151 | |
| 152 | # include "node.hpp" |
| 153 | # include <boost/iterator/iterator_facade.hpp> |
| 154 | |
| 155 | class node_iterator |
| 156 | : public boost::iterator_facade< |
| 157 | node_iterator |
| 158 | , node_base |
| 159 | , boost::forward_traversal_tag |
| 160 | > |
| 161 | { |
| 162 | ... |
| 163 | }; |
| 164 | |
| 165 | |
| 166 | [h2 Constructors and Data Members] |
| 167 | |
| 168 | Next we need to decide how to represent the iterator's position. |
| 169 | This representation will take the form of data members, so we'll |
| 170 | also need to write constructors to initialize them. The |
| 171 | `node_iterator`\ 's position is quite naturally represented using |
| 172 | a pointer to a `node_base`. We'll need a constructor to build an |
| 173 | iterator from a `node_base*`, and a default constructor to |
| 174 | satisfy the `forward traversal iterator`_ requirements [#default]_. |
| 175 | Our `node_iterator` then becomes: |
| 176 | |
| 177 | # include "node.hpp" |
| 178 | # include <boost/iterator/iterator_facade.hpp> |
| 179 | |
| 180 | class node_iterator |
| 181 | : public boost::iterator_facade< |
| 182 | node_iterator |
| 183 | , node_base |
| 184 | , boost::forward_traversal_tag |
| 185 | > |
| 186 | { |
| 187 | public: |
| 188 | node_iterator() |
| 189 | : m_node(0) |
| 190 | {} |
| 191 | |
| 192 | explicit node_iterator(node_base* p) |
| 193 | : m_node(p) |
| 194 | {} |
| 195 | |
| 196 | private: |
| 197 | ... |
| 198 | node_base* m_node; |
| 199 | }; |
| 200 | |
| 201 | .. [#default] Technically, the C++ standard places almost no |
| 202 | requirements on a default-constructed iterator, so if we were |
| 203 | really concerned with efficiency, we could've written the |
| 204 | default constructor to leave `m_node` uninitialized. |
| 205 | |
| 206 | [h2 Implementing the Core Operations] |
| 207 | |
| 208 | The last step is to implement the `core operations`_ required by |
| 209 | the concepts we want our iterator to model. Referring to the |
| 210 | table__, we can see that the first three rows are applicable |
| 211 | because `node_iterator` needs to satisfy the requirements for |
| 212 | `readable iterator`_, `single pass iterator`_, and `incrementable |
| 213 | iterator`_. |
| 214 | |
| 215 | __ `core operations`_ |
| 216 | |
| 217 | We therefore need to supply `dereference`, |
| 218 | `equal`, and `increment` members. We don't want these members |
| 219 | to become part of `node_iterator`\ 's public interface, so we can |
| 220 | make them private and grant friendship to |
| 221 | `boost::iterator_core_access`, a "back-door" that |
| 222 | `iterator_facade` uses to get access to the core operations: |
| 223 | |
| 224 | # include "node.hpp" |
| 225 | # include <boost/iterator/iterator_facade.hpp> |
| 226 | |
| 227 | class node_iterator |
| 228 | : public boost::iterator_facade< |
| 229 | node_iterator |
| 230 | , node_base |
| 231 | , boost::forward_traversal_tag |
| 232 | > |
| 233 | { |
| 234 | public: |
| 235 | node_iterator() |
| 236 | : m_node(0) {} |
| 237 | |
| 238 | explicit node_iterator(node_base* p) |
| 239 | : m_node(p) {} |
| 240 | |
| 241 | private: |
| 242 | friend class boost::iterator_core_access; |
| 243 | |
| 244 | void increment() { m_node = m_node->next(); } |
| 245 | |
| 246 | bool equal(node_iterator const& other) const |
| 247 | { |
| 248 | return this->m_node == other.m_node; |
| 249 | } |
| 250 | |
| 251 | node_base& dereference() const { return *m_node; } |
| 252 | |
| 253 | node_base* m_node; |
| 254 | }; |
| 255 | |
| 256 | Voila; a complete and conforming readable, forward-traversal |
| 257 | iterator! For a working example of its use, see |
| 258 | [@../example/node_iterator1.cpp `this program`]. |
| 259 | |
| 260 | __ ../example/node_iterator1.cpp |
| 261 | |
| 262 | [h2 A constant `node_iterator`] |
| 263 | |
| 264 | [blurb *Constant and Mutable iterators*[br][br] |
| 265 | The term **mutable iterator** means an iterator through which |
| 266 | the object it references (its "referent") can be modified. A |
| 267 | **constant iterator** is one which doesn't allow modification of |
| 268 | its referent.[br][br] |
| 269 | The words *constant* and *mutable* don't refer to the ability to |
| 270 | modify the iterator itself. For example, an `int const*` is a |
| 271 | non-\ `const` *constant iterator*, which can be incremented |
| 272 | but doesn't allow modification of its referent, and `int* |
| 273 | const` is a `const` *mutable iterator*, which cannot be |
| 274 | modified but which allows modification of its referent.[br][br] |
| 275 | Confusing? We agree, but those are the standard terms. It |
| 276 | probably doesn't help much that a container's constant iterator |
| 277 | is called `const_iterator`. |
| 278 | ] |
| 279 | |
| 280 | Now, our `node_iterator` gives clients access to both `node`\ |
| 281 | 's `print(std::ostream&) const` member function, but also its |
| 282 | mutating `double_me()` member. If we wanted to build a |
| 283 | *constant* `node_iterator`, we'd only have to make three |
| 284 | changes: |
| 285 | |
| 286 | class const_node_iterator |
| 287 | : public boost::iterator_facade< |
| 288 | const_node_iterator |
| 289 | , node_base **const** |
| 290 | , boost::forward_traversal_tag |
| 291 | > |
| 292 | { |
| 293 | public: |
| 294 | const_node_iterator() |
| 295 | : m_node(0) {} |
| 296 | |
| 297 | explicit const_node_iterator(node_base* p) |
| 298 | : m_node(p) {} |
| 299 | |
| 300 | private: |
| 301 | friend class boost::iterator_core_access; |
| 302 | |
| 303 | void increment() { m_node = m_node->next(); } |
| 304 | |
| 305 | bool equal(const_node_iterator const& other) const |
| 306 | { |
| 307 | return this->m_node == other.m_node; |
| 308 | } |
| 309 | |
| 310 | node_base **const**\ & dereference() const { return \*m_node; } |
| 311 | |
| 312 | node_base **const**\ * m_node; |
| 313 | }; |
| 314 | |
| 315 | [blurb `const` and an iterator's `value_type`[br][br] |
| 316 | The C++ standard requires an iterator's `value_type` *not* be |
| 317 | `const`\ -qualified, so `iterator_facade` strips the |
| 318 | `const` from its `Value` parameter in order to produce the |
| 319 | iterator's `value_type`. Making the `Value` argument |
| 320 | `const` provides a useful hint to `iterator_facade` that the |
| 321 | iterator is a *constant iterator*, and the default `Reference` |
| 322 | argument will be correct for all lvalue iterators. |
| 323 | ] |
| 324 | |
| 325 | As a matter of fact, `node_iterator` and `const_node_iterator` |
| 326 | are so similar that it makes sense to factor the common code out |
| 327 | into a template as follows: |
| 328 | |
| 329 | template <class Value> |
| 330 | class node_iter |
| 331 | : public boost::iterator_facade< |
| 332 | node_iter<Value> |
| 333 | , Value |
| 334 | , boost::forward_traversal_tag |
| 335 | > |
| 336 | { |
| 337 | public: |
| 338 | node_iter() |
| 339 | : m_node(0) {} |
| 340 | |
| 341 | explicit node_iter(Value* p) |
| 342 | : m_node(p) {} |
| 343 | |
| 344 | private: |
| 345 | friend class boost::iterator_core_access; |
| 346 | |
| 347 | bool equal(node_iter<Value> const& other) const |
| 348 | { |
| 349 | return this->m_node == other.m_node; |
| 350 | } |
| 351 | |
| 352 | void increment() |
| 353 | { m_node = m_node->next(); } |
| 354 | |
| 355 | Value& dereference() const |
| 356 | { return *m_node; } |
| 357 | |
| 358 | Value* m_node; |
| 359 | }; |
| 360 | typedef node_iter<node_base> node_iterator; |
| 361 | typedef node_iter<node_base const> node_const_iterator; |
| 362 | |
| 363 | |
| 364 | [h2 Interoperability] |
| 365 | |
| 366 | Our `const_node_iterator` works perfectly well on its own, but |
| 367 | taken together with `node_iterator` it doesn't quite meet |
| 368 | expectations. For example, we'd like to be able to pass a |
| 369 | `node_iterator` where a `node_const_iterator` was expected, |
| 370 | just as you can with `std::list<int>`\ 's `iterator` and |
| 371 | `const_iterator`. Furthermore, given a `node_iterator` and a |
| 372 | `node_const_iterator` into the same list, we should be able to |
| 373 | compare them for equality. |
| 374 | |
| 375 | This expected ability to use two different iterator types together |
| 376 | is known as |interoperability|_. Achieving interoperability in |
| 377 | our case is as simple as templatizing the `equal` function and |
| 378 | adding a templatized converting constructor [#broken]_ [#random]_: |
| 379 | |
| 380 | template <class Value> |
| 381 | class node_iter |
| 382 | : public boost::iterator_facade< |
| 383 | node_iter<Value> |
| 384 | , Value |
| 385 | , boost::forward_traversal_tag |
| 386 | > |
| 387 | { |
| 388 | public: |
| 389 | node_iter() |
| 390 | : m_node(0) {} |
| 391 | |
| 392 | explicit node_iter(Value* p) |
| 393 | : m_node(p) {} |
| 394 | |
| 395 | template <class OtherValue> |
| 396 | node_iter(node_iter<OtherValue> const& other) |
| 397 | : m_node(other.m_node) {} |
| 398 | |
| 399 | private: |
| 400 | friend class boost::iterator_core_access; |
| 401 | template <class> friend class node_iter; |
| 402 | |
| 403 | template <class OtherValue> |
| 404 | bool equal(node_iter<OtherValue> const& other) const |
| 405 | { |
| 406 | return this->m_node == other.m_node; |
| 407 | } |
| 408 | |
| 409 | void increment() |
| 410 | { m_node = m_node->next(); } |
| 411 | |
| 412 | Value& dereference() const |
| 413 | { return *m_node; } |
| 414 | |
| 415 | Value* m_node; |
| 416 | }; |
| 417 | typedef impl::node_iterator<node_base> node_iterator; |
| 418 | typedef impl::node_iterator<node_base const> node_const_iterator; |
| 419 | |
| 420 | .. |interoperability| replace:: **interoperability** |
| 421 | .. _interoperability: new-iter-concepts.html#interoperable-iterators-lib-interoperable-iterators |
| 422 | |
| 423 | .. [#broken] If you're using an older compiler and it can't handle |
| 424 | this example, see the `example code`__ for workarounds. |
| 425 | |
| 426 | .. [#random] If `node_iterator` had been a `random access |
| 427 | traversal iterator`_, we'd have had to templatize its |
| 428 | `distance_to` function as well. |
| 429 | |
| 430 | |
| 431 | __ ../example/node_iterator2.hpp |
| 432 | |
| 433 | You can see an example program which exercises our interoperable |
| 434 | iterators |
| 435 | [@../example/node_iterator2.cpp `here`]. |
| 436 | |
| 437 | |
| 438 | [h2 Telling the Truth] |
| 439 | |
| 440 | Now `node_iterator` and `node_const_iterator` behave exactly as |
| 441 | you'd expect... almost. We can compare them and we can convert in |
| 442 | one direction: from `node_iterator` to `node_const_iterator`. |
| 443 | If we try to convert from `node_const_iterator` to |
| 444 | `node_iterator`, we'll get an error when the converting |
| 445 | constructor tries to initialize `node_iterator`\ 's `m_node`, a |
| 446 | `node*` with a `node const*`. So what's the problem? |
| 447 | |
| 448 | The problem is that |
| 449 | `boost::`\ |is_convertible|_\ `<node_const_iterator,node_iterator>::value` |
| 450 | will be `true`, but it should be `false`. |is_convertible|_ |
| 451 | lies because it can only see as far as the *declaration* of |
| 452 | `node_iter`\ 's converting constructor, but can't look inside at |
| 453 | the *definition* to make sure it will compile. A perfect solution |
| 454 | would make `node_iter`\ 's converting constructor disappear when |
| 455 | the `m_node` conversion would fail. |
| 456 | |
| 457 | .. |is_convertible| replace:: `is_convertible` |
| 458 | .. _is_convertible: ../../type_traits/index.html#relationships |
| 459 | |
| 460 | In fact, that sort of magic is possible using |
| 461 | |enable_if|__. By rewriting the converting constructor as |
| 462 | follows, we can remove it from the overload set when it's not |
| 463 | appropriate: |
| 464 | |
| 465 | #include <boost/type_traits/is_convertible.hpp> |
| 466 | #include <boost/utility/enable_if.hpp> |
| 467 | |
| 468 | ... |
| 469 | |
| 470 | private: |
| 471 | struct enabler {}; |
| 472 | |
| 473 | public: |
| 474 | template <class OtherValue> |
| 475 | node_iter( |
| 476 | node_iter<OtherValue> const& other |
| 477 | , typename boost::enable_if< |
| 478 | boost::is_convertible<OtherValue*,Value*> |
| 479 | , enabler |
| 480 | >::type = enabler() |
| 481 | ) |
| 482 | : m_node(other.m_node) {} |
| 483 | |
| 484 | .. |enable_if| replace:: `boost::enable_if` |
| 485 | __ ../../utility/enable_if.html |
| 486 | |
| 487 | |
| 488 | [h2 Wrap Up] |
| 489 | |
| 490 | This concludes our `iterator_facade` tutorial, but before you |
| 491 | stop reading we urge you to take a look at |iterator_adaptor|__. |
| 492 | There's another way to approach writing these iterators which might |
| 493 | even be superior. |
| 494 | |
| 495 | .. |iterator_adaptor| replace:: `iterator_adaptor` |
| 496 | __ iterator_adaptor.html |
| 497 | |
| 498 | .. _`iterator traversal concept`: new-iter-concepts.html#iterator-traversal-concepts-lib-iterator-traversal |
| 499 | .. _`readable iterator`: new-iter-concepts.html#readable-iterators-lib-readable-iterators |
| 500 | .. _`lvalue iterator`: new-iter-concepts.html#lvalue-iterators-lib-lvalue-iterators |
| 501 | .. _`single pass iterator`: new-iter-concepts.html#single-pass-iterators-lib-single-pass-iterators |
| 502 | .. _`incrementable iterator`: new-iter-concepts.html#incrementable-iterators-lib-incrementable-iterators |
| 503 | .. _`forward traversal iterator`: new-iter-concepts.html#forward-traversal-iterators-lib-forward-traversal-iterators |
| 504 | .. _`bidirectional traversal iterator`: new-iter-concepts.html#bidirectional-traversal-iterators-lib-bidirectional-traversal-iterators |
| 505 | .. _`random access traversal iterator`: new-iter-concepts.html#random-access-traversal-iterators-lib-random-access-traversal-iterators |
| 506 | |
| 507 | [endsect] |