Brian Silverman | 5962333 | 2018-08-04 23:36:56 -0700 | [diff] [blame^] | 1 | |
| 2 | [section:facade Iterator Facade] |
| 3 | |
| 4 | While the iterator interface is rich, there is a core subset of the |
| 5 | interface that is necessary for all the functionality. We have |
| 6 | identified the following core behaviors for iterators: |
| 7 | |
| 8 | * dereferencing |
| 9 | * incrementing |
| 10 | * decrementing |
| 11 | * equality comparison |
| 12 | * random-access motion |
| 13 | * distance measurement |
| 14 | |
| 15 | In addition to the behaviors listed above, the core interface elements |
| 16 | include the associated types exposed through iterator traits: |
| 17 | `value_type`, `reference`, `difference_type`, and |
| 18 | `iterator_category`. |
| 19 | |
| 20 | Iterator facade uses the Curiously Recurring Template |
| 21 | Pattern (CRTP) [Cop95]_ so that the user can specify the behavior |
| 22 | of `iterator_facade` in a derived class. Former designs used |
| 23 | policy objects to specify the behavior, but that approach was |
| 24 | discarded for several reasons: |
| 25 | |
| 26 | 1. the creation and eventual copying of the policy object may create |
| 27 | overhead that can be avoided with the current approach. |
| 28 | |
| 29 | 2. The policy object approach does not allow for custom constructors |
| 30 | on the created iterator types, an essential feature if |
| 31 | `iterator_facade` should be used in other library |
| 32 | implementations. |
| 33 | |
| 34 | 3. Without the use of CRTP, the standard requirement that an |
| 35 | iterator's `operator++` returns the iterator type itself |
| 36 | would mean that all iterators built with the library would |
| 37 | have to be specializations of `iterator_facade<...>`, rather |
| 38 | than something more descriptive like |
| 39 | `indirect_iterator<T*>`. Cumbersome type generator |
| 40 | metafunctions would be needed to build new parameterized |
| 41 | iterators, and a separate `iterator_adaptor` layer would be |
| 42 | impossible. |
| 43 | |
| 44 | [h2 Usage] |
| 45 | |
| 46 | The user of `iterator_facade` derives his iterator class from a |
| 47 | specialization of `iterator_facade` and passes the derived |
| 48 | iterator class as `iterator_facade`\ 's first template parameter. |
| 49 | The order of the other template parameters have been carefully |
| 50 | chosen to take advantage of useful defaults. For example, when |
| 51 | defining a constant lvalue iterator, the user can pass a |
| 52 | const-qualified version of the iterator's `value_type` as |
| 53 | `iterator_facade`\ 's `Value` parameter and omit the |
| 54 | `Reference` parameter which follows. |
| 55 | |
| 56 | The derived iterator class must define member functions implementing |
| 57 | the iterator's core behaviors. The following table describes |
| 58 | expressions which are required to be valid depending on the category |
| 59 | of the derived iterator type. These member functions are described |
| 60 | briefly below and in more detail in the iterator facade |
| 61 | requirements. |
| 62 | |
| 63 | [table Core Interface |
| 64 | [ |
| 65 | [Expression] |
| 66 | [Effects] |
| 67 | ] |
| 68 | [ |
| 69 | [`i.dereference()`] |
| 70 | [Access the value referred to] |
| 71 | ] |
| 72 | [ |
| 73 | [`i.equal(j)`] |
| 74 | [Compare for equality with `j`] |
| 75 | ] |
| 76 | [ |
| 77 | [`i.increment()`] |
| 78 | [Advance by one position] |
| 79 | ] |
| 80 | [ |
| 81 | [`i.decrement()`] |
| 82 | [Retreat by one position] |
| 83 | ] |
| 84 | [ |
| 85 | [`i.advance(n)`] |
| 86 | [Advance by `n` positions] |
| 87 | ] |
| 88 | [ |
| 89 | [`i.distance_to(j)`] |
| 90 | [Measure the distance to `j`] |
| 91 | ] |
| 92 | ] |
| 93 | |
| 94 | [/ .. Should we add a comment that a zero overhead implementation of iterator_facade is possible with proper inlining?] |
| 95 | |
| 96 | In addition to implementing the core interface functions, an iterator |
| 97 | derived from `iterator_facade` typically defines several |
| 98 | constructors. To model any of the standard iterator concepts, the |
| 99 | iterator must at least have a copy constructor. Also, if the iterator |
| 100 | type `X` is meant to be automatically interoperate with another |
| 101 | iterator type `Y` (as with constant and mutable iterators) then |
| 102 | there must be an implicit conversion from `X` to `Y` or from `Y` |
| 103 | to `X` (but not both), typically implemented as a conversion |
| 104 | constructor. Finally, if the iterator is to model Forward Traversal |
| 105 | Iterator or a more-refined iterator concept, a default constructor is |
| 106 | required. |
| 107 | |
| 108 | [h2 Iterator Core Access] |
| 109 | |
| 110 | `iterator_facade` and the operator implementations need to be able |
| 111 | to access the core member functions in the derived class. Making the |
| 112 | core member functions public would expose an implementation detail to |
| 113 | the user. The design used here ensures that implementation details do |
| 114 | not appear in the public interface of the derived iterator type. |
| 115 | |
| 116 | Preventing direct access to the core member functions has two |
| 117 | advantages. First, there is no possibility for the user to accidently |
| 118 | use a member function of the iterator when a member of the value_type |
| 119 | was intended. This has been an issue with smart pointer |
| 120 | implementations in the past. The second and main advantage is that |
| 121 | library implementers can freely exchange a hand-rolled iterator |
| 122 | implementation for one based on `iterator_facade` without fear of |
| 123 | breaking code that was accessing the public core member functions |
| 124 | directly. |
| 125 | |
| 126 | In a naive implementation, keeping the derived class' core member |
| 127 | functions private would require it to grant friendship to |
| 128 | `iterator_facade` and each of the seven operators. In order to |
| 129 | reduce the burden of limiting access, `iterator_core_access` is |
| 130 | provided, a class that acts as a gateway to the core member functions |
| 131 | in the derived iterator class. The author of the derived class only |
| 132 | needs to grant friendship to `iterator_core_access` to make his core |
| 133 | member functions available to the library. |
| 134 | |
| 135 | |
| 136 | `iterator_core_access` will be typically implemented as an empty |
| 137 | class containing only private static member functions which invoke the |
| 138 | iterator core member functions. There is, however, no need to |
| 139 | standardize the gateway protocol. Note that even if |
| 140 | `iterator_core_access` used public member functions it would not |
| 141 | open a safety loophole, as every core member function preserves the |
| 142 | invariants of the iterator. |
| 143 | |
| 144 | [h2 `operator[]`] |
| 145 | |
| 146 | The indexing operator for a generalized iterator presents special |
| 147 | challenges. A random access iterator's `operator[]` is only |
| 148 | required to return something convertible to its `value_type`. |
| 149 | Requiring that it return an lvalue would rule out currently-legal |
| 150 | random-access iterators which hold the referenced value in a data |
| 151 | member (e.g. |counting|_), because `*(p+n)` is a reference |
| 152 | into the temporary iterator `p+n`, which is destroyed when |
| 153 | `operator[]` returns. |
| 154 | |
| 155 | .. |counting| replace:: `counting_iterator` |
| 156 | |
| 157 | Writable iterators built with `iterator_facade` implement the |
| 158 | semantics required by the preferred resolution to `issue 299`_ and |
| 159 | adopted by proposal n1550_: the result of `p[n]` is an object |
| 160 | convertible to the iterator's `value_type`, and `p[n] = x` is |
| 161 | equivalent to `*(p + n) = x` (Note: This result object may be |
| 162 | implemented as a proxy containing a copy of `p+n`). This approach |
| 163 | will work properly for any random-access iterator regardless of the |
| 164 | other details of its implementation. A user who knows more about |
| 165 | the implementation of her iterator is free to implement an |
| 166 | `operator[]` that returns an lvalue in the derived iterator |
| 167 | class; it will hide the one supplied by `iterator_facade` from |
| 168 | clients of her iterator. |
| 169 | |
| 170 | .. _n1550: http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2003/n1550.htm |
| 171 | |
| 172 | .. _`issue 299`: http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#299 |
| 173 | |
| 174 | .. _`operator arrow`: |
| 175 | |
| 176 | [h2 `operator->`] |
| 177 | |
| 178 | The `reference` type of a readable iterator (and today's input |
| 179 | iterator) need not in fact be a reference, so long as it is |
| 180 | convertible to the iterator's `value_type`. When the `value_type` |
| 181 | is a class, however, it must still be possible to access members |
| 182 | through `operator->`. Therefore, an iterator whose `reference` |
| 183 | type is not in fact a reference must return a proxy containing a copy |
| 184 | of the referenced value from its `operator->`. |
| 185 | |
| 186 | The return types for `iterator_facade`\ 's `operator->` and |
| 187 | `operator[]` are not explicitly specified. Instead, those types |
| 188 | are described in terms of a set of requirements, which must be |
| 189 | satisfied by the `iterator_facade` implementation. |
| 190 | |
| 191 | .. [Cop95] [Coplien, 1995] Coplien, J., Curiously Recurring Template |
| 192 | Patterns, C++ Report, February 1995, pp. 24-27. |
| 193 | |
| 194 | [section:facade_reference Reference] |
| 195 | |
| 196 | template < |
| 197 | class Derived |
| 198 | , class Value |
| 199 | , class CategoryOrTraversal |
| 200 | , class Reference = Value& |
| 201 | , class Difference = ptrdiff_t |
| 202 | > |
| 203 | class iterator_facade { |
| 204 | public: |
| 205 | typedef remove_const<Value>::type value_type; |
| 206 | typedef Reference reference; |
| 207 | typedef Value\* pointer; |
| 208 | typedef Difference difference_type; |
| 209 | typedef /* see below__ \*/ iterator_category; |
| 210 | |
| 211 | reference operator\*() const; |
| 212 | /* see below__ \*/ operator->() const; |
| 213 | /* see below__ \*/ operator[](difference_type n) const; |
| 214 | Derived& operator++(); |
| 215 | Derived operator++(int); |
| 216 | Derived& operator--(); |
| 217 | Derived operator--(int); |
| 218 | Derived& operator+=(difference_type n); |
| 219 | Derived& operator-=(difference_type n); |
| 220 | Derived operator-(difference_type n) const; |
| 221 | protected: |
| 222 | typedef iterator_facade iterator_facade\_; |
| 223 | }; |
| 224 | |
| 225 | // Comparison operators |
| 226 | template <class Dr1, class V1, class TC1, class R1, class D1, |
| 227 | class Dr2, class V2, class TC2, class R2, class D2> |
| 228 | typename enable_if_interoperable<Dr1,Dr2,bool>::type // exposition |
| 229 | operator ==(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs, |
| 230 | iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs); |
| 231 | |
| 232 | template <class Dr1, class V1, class TC1, class R1, class D1, |
| 233 | class Dr2, class V2, class TC2, class R2, class D2> |
| 234 | typename enable_if_interoperable<Dr1,Dr2,bool>::type |
| 235 | operator !=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs, |
| 236 | iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs); |
| 237 | |
| 238 | template <class Dr1, class V1, class TC1, class R1, class D1, |
| 239 | class Dr2, class V2, class TC2, class R2, class D2> |
| 240 | typename enable_if_interoperable<Dr1,Dr2,bool>::type |
| 241 | operator <(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs, |
| 242 | iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs); |
| 243 | |
| 244 | template <class Dr1, class V1, class TC1, class R1, class D1, |
| 245 | class Dr2, class V2, class TC2, class R2, class D2> |
| 246 | typename enable_if_interoperable<Dr1,Dr2,bool>::type |
| 247 | operator <=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs, |
| 248 | iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs); |
| 249 | |
| 250 | template <class Dr1, class V1, class TC1, class R1, class D1, |
| 251 | class Dr2, class V2, class TC2, class R2, class D2> |
| 252 | typename enable_if_interoperable<Dr1,Dr2,bool>::type |
| 253 | operator >(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs, |
| 254 | iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs); |
| 255 | |
| 256 | template <class Dr1, class V1, class TC1, class R1, class D1, |
| 257 | class Dr2, class V2, class TC2, class R2, class D2> |
| 258 | typename enable_if_interoperable<Dr1,Dr2,bool>::type |
| 259 | operator >=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs, |
| 260 | iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs); |
| 261 | |
| 262 | // Iterator difference |
| 263 | template <class Dr1, class V1, class TC1, class R1, class D1, |
| 264 | class Dr2, class V2, class TC2, class R2, class D2> |
| 265 | /* see below__ \*/ |
| 266 | operator-(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs, |
| 267 | iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs); |
| 268 | |
| 269 | // Iterator addition |
| 270 | template <class Dr, class V, class TC, class R, class D> |
| 271 | Derived operator+ (iterator_facade<Dr,V,TC,R,D> const&, |
| 272 | typename Derived::difference_type n); |
| 273 | |
| 274 | template <class Dr, class V, class TC, class R, class D> |
| 275 | Derived operator+ (typename Derived::difference_type n, |
| 276 | iterator_facade<Dr,V,TC,R,D> const&); |
| 277 | |
| 278 | __ `iterator category`_ |
| 279 | |
| 280 | __ `operator arrow`_ |
| 281 | |
| 282 | __ brackets_ |
| 283 | |
| 284 | __ minus_ |
| 285 | |
| 286 | .. _`iterator category`: |
| 287 | |
| 288 | The `iterator_category` member of `iterator_facade` is |
| 289 | |
| 290 | .. parsed-literal:: |
| 291 | |
| 292 | *iterator-category*\ (CategoryOrTraversal, reference, value_type) |
| 293 | |
| 294 | where *iterator-category* is defined as follows: |
| 295 | |
| 296 | .. include:: facade_iterator_category.rst |
| 297 | |
| 298 | The `enable_if_interoperable` template used above is for exposition |
| 299 | purposes. The member operators should only be in an overload set |
| 300 | provided the derived types `Dr1` and `Dr2` are interoperable, |
| 301 | meaning that at least one of the types is convertible to the other. The |
| 302 | `enable_if_interoperable` approach uses SFINAE to take the operators |
| 303 | out of the overload set when the types are not interoperable. |
| 304 | The operators should behave *as-if* `enable_if_interoperable` |
| 305 | were defined to be: |
| 306 | |
| 307 | template <bool, typename> enable_if_interoperable_impl |
| 308 | {}; |
| 309 | |
| 310 | template <typename T> enable_if_interoperable_impl<true,T> |
| 311 | { typedef T type; }; |
| 312 | |
| 313 | template<typename Dr1, typename Dr2, typename T> |
| 314 | struct enable_if_interoperable |
| 315 | : enable_if_interoperable_impl< |
| 316 | is_convertible<Dr1,Dr2>::value || is_convertible<Dr2,Dr1>::value |
| 317 | , T |
| 318 | > |
| 319 | {}; |
| 320 | |
| 321 | |
| 322 | [h2 Requirements] |
| 323 | |
| 324 | The following table describes the typical valid expressions on |
| 325 | `iterator_facade`\ 's `Derived` parameter, depending on the |
| 326 | iterator concept(s) it will model. The operations in the first |
| 327 | column must be made accessible to member functions of class |
| 328 | `iterator_core_access`. In addition, |
| 329 | `static_cast<Derived*>(iterator_facade*)` shall be well-formed. |
| 330 | |
| 331 | In the table below, `F` is `iterator_facade<X,V,C,R,D>`, `a` is an |
| 332 | object of type `X`, `b` and `c` are objects of type `const X`, |
| 333 | `n` is an object of `F::difference_type`, `y` is a constant |
| 334 | object of a single pass iterator type interoperable with `X`, and `z` |
| 335 | is a constant object of a random access traversal iterator type |
| 336 | interoperable with `X`. |
| 337 | |
| 338 | .. _`core operations`: |
| 339 | |
| 340 | .. topic:: `iterator_facade` Core Operations |
| 341 | |
| 342 | [table Core Operations |
| 343 | [ |
| 344 | [Expression] |
| 345 | [Return Type] |
| 346 | [Assertion/Note] |
| 347 | [Used to implement Iterator Concept(s)] |
| 348 | ] |
| 349 | [ |
| 350 | [`c.dereference()`] |
| 351 | [`F::reference`] |
| 352 | [] |
| 353 | [Readable Iterator, Writable Iterator] |
| 354 | ] |
| 355 | [ |
| 356 | [`c.equal(y)`] |
| 357 | [convertible to bool] |
| 358 | [true iff `c` and `y` refer to the same position] |
| 359 | [Single Pass Iterator] |
| 360 | ] |
| 361 | [ |
| 362 | [`a.increment()`] |
| 363 | [unused] |
| 364 | [] |
| 365 | [Incrementable Iterator] |
| 366 | ] |
| 367 | [ |
| 368 | [`a.decrement()`] |
| 369 | [unused] |
| 370 | [] |
| 371 | [Bidirectional Traversal Iterator] |
| 372 | ] |
| 373 | [ |
| 374 | [`a.advance(n)`] |
| 375 | [unused] |
| 376 | [] |
| 377 | [Random Access Traversal Iterator] |
| 378 | ] |
| 379 | [ |
| 380 | [`c.distance_to(z)`] |
| 381 | [convertible to `F::difference_type`] |
| 382 | [equivalent to `distance(c, X(z))`.] |
| 383 | [Random Access Traversal Iterator] |
| 384 | ] |
| 385 | ] |
| 386 | |
| 387 | [h2 Operations] |
| 388 | |
| 389 | The operations in this section are described in terms of operations on |
| 390 | the core interface of `Derived` which may be inaccessible |
| 391 | (i.e. private). The implementation should access these operations |
| 392 | through member functions of class `iterator_core_access`. |
| 393 | |
| 394 | reference operator*() const; |
| 395 | |
| 396 | [*Returns:] `static_cast<Derived const*>(this)->dereference()` |
| 397 | |
| 398 | operator->() const; (see below__) |
| 399 | |
| 400 | __ `operator arrow`_ |
| 401 | |
| 402 | [*Returns:] If `reference` is a reference type, an object of type `pointer` equal to: `&static_cast<Derived const*>(this)->dereference()` |
| 403 | Otherwise returns an object of unspecified type such that, |
| 404 | `(*static_cast<Derived const*>(this))->m` is equivalent to `(w = **static_cast<Derived const*>(this), |
| 405 | w.m)` for some temporary object `w` of type `value_type`. |
| 406 | |
| 407 | .. _brackets: |
| 408 | |
| 409 | *unspecified* operator[](difference_type n) const; |
| 410 | |
| 411 | [*Returns:] an object convertible to `value_type`. For constant |
| 412 | objects `v` of type `value_type`, and `n` of type |
| 413 | `difference_type`, `(*this)[n] = v` is equivalent to |
| 414 | `*(*this + n) = v`, and `static_cast<value_type |
| 415 | const&>((*this)[n])` is equivalent to |
| 416 | `static_cast<value_type const&>(*(*this + n))` |
| 417 | |
| 418 | Derived& operator++(); |
| 419 | |
| 420 | [*Effects:] |
| 421 | |
| 422 | static_cast<Derived*>(this)->increment(); |
| 423 | return *static_cast<Derived*>(this); |
| 424 | |
| 425 | Derived operator++(int); |
| 426 | |
| 427 | [*Effects:] |
| 428 | |
| 429 | Derived tmp(static_cast<Derived const*>(this)); |
| 430 | ++*this; |
| 431 | return tmp; |
| 432 | |
| 433 | Derived& operator--(); |
| 434 | |
| 435 | [*Effects:] |
| 436 | |
| 437 | static_cast<Derived*>(this)->decrement(); |
| 438 | return *static_cast<Derived*>(this); |
| 439 | |
| 440 | Derived operator--(int); |
| 441 | |
| 442 | [*Effects:] |
| 443 | |
| 444 | Derived tmp(static_cast<Derived const*>(this)); |
| 445 | --*this; |
| 446 | return tmp; |
| 447 | |
| 448 | |
| 449 | Derived& operator+=(difference_type n); |
| 450 | |
| 451 | [*Effects:] |
| 452 | |
| 453 | static_cast<Derived*>(this)->advance(n); |
| 454 | return *static_cast<Derived*>(this); |
| 455 | |
| 456 | |
| 457 | Derived& operator-=(difference_type n); |
| 458 | |
| 459 | [*Effects:] |
| 460 | |
| 461 | static_cast<Derived*>(this)->advance(-n); |
| 462 | return *static_cast<Derived*>(this); |
| 463 | |
| 464 | |
| 465 | Derived operator-(difference_type n) const; |
| 466 | |
| 467 | [*Effects:] |
| 468 | |
| 469 | Derived tmp(static_cast<Derived const*>(this)); |
| 470 | return tmp -= n; |
| 471 | |
| 472 | template <class Dr, class V, class TC, class R, class D> |
| 473 | Derived operator+ (iterator_facade<Dr,V,TC,R,D> const&, |
| 474 | typename Derived::difference_type n); |
| 475 | |
| 476 | template <class Dr, class V, class TC, class R, class D> |
| 477 | Derived operator+ (typename Derived::difference_type n, |
| 478 | iterator_facade<Dr,V,TC,R,D> const&); |
| 479 | |
| 480 | [*Effects:] |
| 481 | |
| 482 | Derived tmp(static_cast<Derived const*>(this)); |
| 483 | return tmp += n; |
| 484 | |
| 485 | template <class Dr1, class V1, class TC1, class R1, class D1, |
| 486 | class Dr2, class V2, class TC2, class R2, class D2> |
| 487 | typename enable_if_interoperable<Dr1,Dr2,bool>::type |
| 488 | operator ==(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs, |
| 489 | iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs); |
| 490 | |
| 491 | [*Returns:] |
| 492 | |
| 493 | [pre |
| 494 | if `is_convertible<Dr2,Dr1>::value` |
| 495 | |
| 496 | then |
| 497 | `((Dr1 const&)lhs).equal((Dr2 const&)rhs)`. |
| 498 | |
| 499 | Otherwise, |
| 500 | `((Dr2 const&)rhs).equal((Dr1 const&)lhs)`. |
| 501 | ] |
| 502 | |
| 503 | |
| 504 | template <class Dr1, class V1, class TC1, class R1, class D1, |
| 505 | class Dr2, class V2, class TC2, class R2, class D2> |
| 506 | typename enable_if_interoperable<Dr1,Dr2,bool>::type |
| 507 | operator !=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs, |
| 508 | iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs); |
| 509 | |
| 510 | [*Returns:] |
| 511 | |
| 512 | [pre |
| 513 | if `is_convertible<Dr2,Dr1>::value` |
| 514 | |
| 515 | then |
| 516 | `!((Dr1 const&)lhs).equal((Dr2 const&)rhs)`. |
| 517 | |
| 518 | Otherwise, |
| 519 | `!((Dr2 const&)rhs).equal((Dr1 const&)lhs)`. |
| 520 | ] |
| 521 | |
| 522 | |
| 523 | template <class Dr1, class V1, class TC1, class R1, class D1, |
| 524 | class Dr2, class V2, class TC2, class R2, class D2> |
| 525 | typename enable_if_interoperable<Dr1,Dr2,bool>::type |
| 526 | operator <(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs, |
| 527 | iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs); |
| 528 | |
| 529 | [*Returns:] |
| 530 | |
| 531 | [pre |
| 532 | if `is_convertible<Dr2,Dr1>::value` |
| 533 | |
| 534 | then |
| 535 | `((Dr1 const&)lhs).distance_to((Dr2 const&)rhs) < 0`. |
| 536 | |
| 537 | Otherwise, |
| 538 | `((Dr2 const&)rhs).distance_to((Dr1 const&)lhs) > 0`. |
| 539 | ] |
| 540 | |
| 541 | |
| 542 | template <class Dr1, class V1, class TC1, class R1, class D1, |
| 543 | class Dr2, class V2, class TC2, class R2, class D2> |
| 544 | typename enable_if_interoperable<Dr1,Dr2,bool>::type |
| 545 | operator <=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs, |
| 546 | iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs); |
| 547 | |
| 548 | [*Returns:] |
| 549 | |
| 550 | [pre |
| 551 | if `is_convertible<Dr2,Dr1>::value` |
| 552 | |
| 553 | then |
| 554 | `((Dr1 const&)lhs).distance_to((Dr2 const&)rhs) <= 0`. |
| 555 | |
| 556 | Otherwise, |
| 557 | `((Dr2 const&)rhs).distance_to((Dr1 const&)lhs) >= 0`. |
| 558 | ] |
| 559 | |
| 560 | |
| 561 | template <class Dr1, class V1, class TC1, class R1, class D1, |
| 562 | class Dr2, class V2, class TC2, class R2, class D2> |
| 563 | typename enable_if_interoperable<Dr1,Dr2,bool>::type |
| 564 | operator >(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs, |
| 565 | iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs); |
| 566 | |
| 567 | [*Returns:] |
| 568 | |
| 569 | [pre |
| 570 | if `is_convertible<Dr2,Dr1>::value` |
| 571 | |
| 572 | then |
| 573 | `((Dr1 const&)lhs).distance_to((Dr2 const&)rhs) > 0`. |
| 574 | |
| 575 | Otherwise, |
| 576 | `((Dr2 const&)rhs).distance_to((Dr1 const&)lhs) < 0`. |
| 577 | ] |
| 578 | |
| 579 | |
| 580 | template <class Dr1, class V1, class TC1, class R1, class D1, |
| 581 | class Dr2, class V2, class TC2, class R2, class D2> |
| 582 | typename enable_if_interoperable<Dr1,Dr2,bool>::type |
| 583 | operator >=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs, |
| 584 | iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs); |
| 585 | |
| 586 | [*Returns:] |
| 587 | |
| 588 | [pre |
| 589 | if `is_convertible<Dr2,Dr1>::value` |
| 590 | |
| 591 | then |
| 592 | `((Dr1 const&)lhs).distance_to((Dr2 const&)rhs) >= 0`. |
| 593 | |
| 594 | Otherwise, |
| 595 | `((Dr2 const&)rhs).distance_to((Dr1 const&)lhs) <= 0`. |
| 596 | ] |
| 597 | |
| 598 | .. _minus: |
| 599 | |
| 600 | |
| 601 | template <class Dr1, class V1, class TC1, class R1, class D1, |
| 602 | class Dr2, class V2, class TC2, class R2, class D2> |
| 603 | typename enable_if_interoperable<Dr1,Dr2,difference>::type |
| 604 | operator -(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs, |
| 605 | iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs); |
| 606 | |
| 607 | [*Return Type:] |
| 608 | |
| 609 | [pre |
| 610 | if `is_convertible<Dr2,Dr1>::value` |
| 611 | |
| 612 | then |
| 613 | `difference` shall be |
| 614 | `iterator_traits<Dr1>::difference_type`. |
| 615 | |
| 616 | Otherwise |
| 617 | `difference` shall be `iterator_traits<Dr2>::difference_type` |
| 618 | ] |
| 619 | |
| 620 | [*Returns:] |
| 621 | |
| 622 | [pre |
| 623 | if `is_convertible<Dr2,Dr1>::value` |
| 624 | |
| 625 | then |
| 626 | `-((Dr1 const&)lhs).distance_to((Dr2 const&)rhs)`. |
| 627 | |
| 628 | Otherwise, |
| 629 | `((Dr2 const&)rhs).distance_to((Dr1 const&)lhs)`. |
| 630 | ] |
| 631 | |
| 632 | |
| 633 | [endsect] |
| 634 | |
| 635 | [include facade_tutorial.qbk] |
| 636 | |
| 637 | [endsect] |