Brian Silverman | 5962333 | 2018-08-04 23:36:56 -0700 | [diff] [blame^] | 1 | :Author: |
| 2 | `Dean Michael Berris <mailto:me@deanberris.com>`_ |
| 3 | |
| 4 | :License: |
| 5 | Distributed under the Boost Software License, Version 1.0 |
| 6 | (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
| 7 | |
| 8 | :Copyright: |
| 9 | Copyright 2012 Google, Inc. |
| 10 | |
| 11 | Function Input Iterator |
| 12 | ======================= |
| 13 | |
| 14 | The Function Input Iterator allows for creating iterators that encapsulate |
| 15 | a nullary function object and a state object which tracks the number of times |
| 16 | the iterator has been incremented. A Function Input Iterator models the |
| 17 | `InputIterator`_ concept and is useful for creating bounded input iterators. |
| 18 | |
| 19 | .. _InputIterator: http://www.sgi.com/tech/stl/InputIterator.html |
| 20 | |
| 21 | The Function Input Iterator takes a function that models the Generator_ concept |
| 22 | (which is basically a nullary or 0-arity function object). The first dereference |
| 23 | of the iterator at a given position invokes the generator function and stores |
| 24 | and returns the result; subsequent dereferences at the same position simply |
| 25 | return the same stored result. Incrementing the iterator places it at a new |
| 26 | position, hence a subsequent dereference will generate a new value via another |
| 27 | invokation of the generator function. This ensures the generator function is |
| 28 | invoked precisely when the iterator is requested to return a (new) value. |
| 29 | |
| 30 | .. _Generator: http://www.sgi.com/tech/stl/Generator.html |
| 31 | |
| 32 | The Function Input Iterator encapsulates a state object which models the |
| 33 | `Incrementable Concept`_ and the EqualityComparable_ Concept. These concepts are |
| 34 | described below as: |
| 35 | |
| 36 | .. _EqualityComparable: http://www.sgi.com/tech/stl/EqualityComparable.html |
| 37 | |
| 38 | Incrementable Concept |
| 39 | --------------------- |
| 40 | |
| 41 | A type models the Incrementable Concept when it supports the pre- and post- |
| 42 | increment operators. For a given object ``i`` with type ``I``, the following |
| 43 | constructs should be valid: |
| 44 | |
| 45 | ========= ================= =========== |
| 46 | Construct Description Return Type |
| 47 | ----------------------------------------- |
| 48 | i++ Post-increment i. I |
| 49 | ++i Pre-increment i. I& |
| 50 | ========= ================= =========== |
| 51 | |
| 52 | NOTE: An Incrementable type should also be DefaultConstructible_. |
| 53 | |
| 54 | .. _DefaultConstructible: http://www.sgi.com/tech/stl/DefaultConstructible.html |
| 55 | |
| 56 | Synopsis |
| 57 | -------- |
| 58 | |
| 59 | :: |
| 60 | |
| 61 | namespace { |
| 62 | template <class Function, class State> |
| 63 | class function_input_iterator; |
| 64 | |
| 65 | template <class Function, class State> |
| 66 | typename function_input_iterator<Function, State> |
| 67 | make_function_input_iterator(Function & f, State s); |
| 68 | |
| 69 | struct infinite; |
| 70 | } |
| 71 | |
| 72 | Function Input Iterator Class |
| 73 | ----------------------------- |
| 74 | |
| 75 | The class Function Input Iterator class takes two template parameters |
| 76 | ``Function`` and ``State``. These two template parameters tell the |
| 77 | Function Input Iterator the type of the function to encapsulate and |
| 78 | the type of the internal state value to hold. |
| 79 | |
| 80 | The ``State`` parameter is important in cases where you want to |
| 81 | control the type of the counter which determines whether two iterators |
| 82 | are at the same state. This allows for creating a pair of iterators which |
| 83 | bound the range of the invocations of the encapsulated functions. |
| 84 | |
| 85 | Examples |
| 86 | -------- |
| 87 | |
| 88 | The following example shows how we use the function input iterator class |
| 89 | in cases where we want to create bounded (lazy) generated ranges. |
| 90 | |
| 91 | :: |
| 92 | |
| 93 | struct generator { |
| 94 | typedef int result_type; |
| 95 | generator() { srand(time(0)); } |
| 96 | result_type operator() () const { |
| 97 | return rand(); |
| 98 | } |
| 99 | }; |
| 100 | |
| 101 | int main(int argc, char * argv[]) { |
| 102 | generator f; |
| 103 | copy( |
| 104 | make_function_input_iterator(f, 0), |
| 105 | make_function_input_iterator(f, 10), |
| 106 | ostream_iterator<int>(cout, " ") |
| 107 | ); |
| 108 | return 0; |
| 109 | } |
| 110 | |
| 111 | Here we can see that we've bounded the number of invocations using an ``int`` |
| 112 | that counts from ``0`` to ``10``. Say we want to create an endless stream |
| 113 | of random numbers and encapsulate that in a pair of integers, we can do |
| 114 | it with the ``boost::infinite`` helper class. |
| 115 | |
| 116 | :: |
| 117 | |
| 118 | copy( |
| 119 | make_function_input_iterator(f,infinite()), |
| 120 | make_function_input_iterator(f,infinite()), |
| 121 | ostream_iterator<int>(cout, " ") |
| 122 | ); |
| 123 | |
| 124 | Above, instead of creating a huge vector we rely on the STL copy algorithm |
| 125 | to traverse the function input iterator and call the function object f |
| 126 | as it increments the iterator. The special property of ``boost::infinite`` |
| 127 | is that equating two instances always yield false -- and that incrementing |
| 128 | an instance of ``boost::infinite`` doesn't do anything. This is an efficient |
| 129 | way of stating that the iterator range provided by two iterators with an |
| 130 | encapsulated infinite state will definitely be infinite. |
| 131 | |
| 132 | |