blob: 39fa33d4fb5aa917a056faf00e90311ae216725f [file] [log] [blame]
Austin Schuh085eab92020-11-26 13:54:51 -08001#!/usr/bin/python3
Campbell Crowley33e0e3d2017-12-27 17:55:40 -08002
3import numpy
4from frc971.control_loops.python import polytope
5import frc971.control_loops.python.drivetrain
6from frc971.control_loops.python import control_loop
7from frc971.control_loops.python import controls
8from frc971.control_loops.python.cim import CIM
9from matplotlib import pylab
10
11import glog
12
Tyler Chatow6738c362019-02-16 14:12:30 -080013
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080014def CoerceGoal(region, K, w, R):
Tyler Chatow6738c362019-02-16 14:12:30 -080015 """Intersects a line with a region, and finds the closest point to R.
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080016
Tyler Chatow6738c362019-02-16 14:12:30 -080017 Finds a point that is closest to R inside the region, and on the line
18 defined by K X = w. If it is not possible to find a point on the line,
19 finds a point that is inside the region and closest to the line. This
20 function assumes that
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080021
Tyler Chatow6738c362019-02-16 14:12:30 -080022 Args:
23 region: HPolytope, the valid goal region.
24 K: numpy.matrix (2 x 1), the matrix for the equation [K1, K2] [x1; x2] = w
25 w: float, the offset in the equation above.
26 R: numpy.matrix (2 x 1), the point to be closest to.
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080027
Tyler Chatow6738c362019-02-16 14:12:30 -080028 Returns:
29 numpy.matrix (2 x 1), the point.
30 """
31 return DoCoerceGoal(region, K, w, R)[0]
32
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080033
34def DoCoerceGoal(region, K, w, R):
Tyler Chatow6738c362019-02-16 14:12:30 -080035 if region.IsInside(R):
36 return (R, True)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080037
Tyler Chatow6738c362019-02-16 14:12:30 -080038 perpendicular_vector = K.T / numpy.linalg.norm(K)
39 parallel_vector = numpy.matrix([[perpendicular_vector[1, 0]],
40 [-perpendicular_vector[0, 0]]])
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080041
Tyler Chatow6738c362019-02-16 14:12:30 -080042 # We want to impose the constraint K * X = w on the polytope H * X <= k.
43 # We do this by breaking X up into parallel and perpendicular components to
44 # the half plane. This gives us the following equation.
45 #
46 # parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) = X
47 #
48 # Then, substitute this into the polytope.
49 #
50 # H * (parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) <= k
51 #
52 # Substitute K * X = w
53 #
54 # H * parallel * (parallel.T \dot X) + H * perpendicular * w <= k
55 #
56 # Move all the knowns to the right side.
57 #
58 # H * parallel * ([parallel1 parallel2] * X) <= k - H * perpendicular * w
59 #
60 # Let t = parallel.T \dot X, the component parallel to the surface.
61 #
62 # H * parallel * t <= k - H * perpendicular * w
63 #
64 # This is a polytope which we can solve, and use to figure out the range of X
65 # that we care about!
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080066
Tyler Chatow6738c362019-02-16 14:12:30 -080067 t_poly = polytope.HPolytope(region.H * parallel_vector,
68 region.k - region.H * perpendicular_vector * w)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080069
Tyler Chatow6738c362019-02-16 14:12:30 -080070 vertices = t_poly.Vertices()
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080071
Tyler Chatow6738c362019-02-16 14:12:30 -080072 if vertices.shape[0]:
73 # The region exists!
74 # Find the closest vertex
75 min_distance = numpy.infty
76 closest_point = None
77 for vertex in vertices:
78 point = parallel_vector * vertex + perpendicular_vector * w
79 length = numpy.linalg.norm(R - point)
80 if length < min_distance:
81 min_distance = length
82 closest_point = point
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080083
Tyler Chatow6738c362019-02-16 14:12:30 -080084 return (closest_point, True)
85 else:
86 # Find the vertex of the space that is closest to the line.
87 region_vertices = region.Vertices()
88 min_distance = numpy.infty
89 closest_point = None
90 for vertex in region_vertices:
91 point = vertex.T
92 length = numpy.abs((perpendicular_vector.T * point)[0, 0])
93 if length < min_distance:
94 min_distance = length
95 closest_point = point
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080096
Tyler Chatow6738c362019-02-16 14:12:30 -080097 return (closest_point, False)
98
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080099
100class VelocityDrivetrainModel(control_loop.ControlLoop):
Tyler Chatow6738c362019-02-16 14:12:30 -0800101 def __init__(self,
102 drivetrain_params,
103 left_low=True,
104 right_low=True,
105 name="VelocityDrivetrainModel"):
106 super(VelocityDrivetrainModel, self).__init__(name)
107 self._drivetrain = frc971.control_loops.python.drivetrain.Drivetrain(
108 left_low=left_low,
109 right_low=right_low,
110 drivetrain_params=drivetrain_params)
111 self.dt = drivetrain_params.dt
112 self.A_continuous = numpy.matrix(
113 [[
114 self._drivetrain.A_continuous[1, 1],
115 self._drivetrain.A_continuous[1, 3]
116 ],
117 [
118 self._drivetrain.A_continuous[3, 1],
119 self._drivetrain.A_continuous[3, 3]
120 ]])
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800121
Tyler Chatow6738c362019-02-16 14:12:30 -0800122 self.B_continuous = numpy.matrix(
123 [[
124 self._drivetrain.B_continuous[1, 0],
125 self._drivetrain.B_continuous[1, 1]
126 ],
127 [
128 self._drivetrain.B_continuous[3, 0],
129 self._drivetrain.B_continuous[3, 1]
130 ]])
131 self.C = numpy.matrix(numpy.eye(2))
132 self.D = numpy.matrix(numpy.zeros((2, 2)))
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800133
Tyler Chatow6738c362019-02-16 14:12:30 -0800134 self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
135 self.B_continuous, self.dt)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800136
Tyler Chatow6738c362019-02-16 14:12:30 -0800137 # FF * X = U (steady state)
138 self.FF = self.B.I * (numpy.eye(2) - self.A)
Austin Schuh74425152018-12-21 11:37:14 +1100139
Tyler Chatow6738c362019-02-16 14:12:30 -0800140 self.PlaceControllerPoles(drivetrain_params.controller_poles)
141 # Build a kalman filter for the velocity. We don't care what the gains
142 # are, but the hybrid kalman filter that we want to write to disk to get
143 # access to A_continuous and B_continuous needs this for completeness.
Ravago Jones26f7ad02021-02-05 15:45:59 -0800144 self.Q_continuous = numpy.matrix([[(0.5**2.0), 0.0], [0.0, (0.5
145 **2.0)]])
146 self.R_continuous = numpy.matrix([[(0.1**2.0), 0.0], [0.0, (0.1
147 **2.0)]])
Tyler Chatow6738c362019-02-16 14:12:30 -0800148 self.PlaceObserverPoles(drivetrain_params.observer_poles)
149 _, _, self.Q, self.R = controls.kalmd(
150 A_continuous=self.A_continuous,
151 B_continuous=self.B_continuous,
152 Q_continuous=self.Q_continuous,
153 R_continuous=self.R_continuous,
154 dt=self.dt)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800155
Tyler Chatow6738c362019-02-16 14:12:30 -0800156 self.KalmanGain, self.P_steady_state = controls.kalman(
157 A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800158
Tyler Chatow6738c362019-02-16 14:12:30 -0800159 self.G_high = self._drivetrain.G_high
160 self.G_low = self._drivetrain.G_low
161 self.resistance = self._drivetrain.resistance
162 self.r = self._drivetrain.r
163 self.Kv = self._drivetrain.Kv
164 self.Kt = self._drivetrain.Kt
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800165
Tyler Chatow6738c362019-02-16 14:12:30 -0800166 self.U_max = self._drivetrain.U_max
167 self.U_min = self._drivetrain.U_min
168
169 @property
170 def robot_radius_l(self):
171 return self._drivetrain.robot_radius_l
172
173 @property
174 def robot_radius_r(self):
175 return self._drivetrain.robot_radius_r
176
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800177
178class VelocityDrivetrain(object):
Tyler Chatow6738c362019-02-16 14:12:30 -0800179 HIGH = 'high'
180 LOW = 'low'
181 SHIFTING_UP = 'up'
182 SHIFTING_DOWN = 'down'
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800183
Tyler Chatow6738c362019-02-16 14:12:30 -0800184 def __init__(self, drivetrain_params, name='VelocityDrivetrain'):
185 self.drivetrain_low_low = VelocityDrivetrainModel(
186 left_low=True,
187 right_low=True,
188 name=name + 'LowLow',
189 drivetrain_params=drivetrain_params)
190 self.drivetrain_low_high = VelocityDrivetrainModel(
191 left_low=True,
192 right_low=False,
193 name=name + 'LowHigh',
194 drivetrain_params=drivetrain_params)
195 self.drivetrain_high_low = VelocityDrivetrainModel(
196 left_low=False,
197 right_low=True,
198 name=name + 'HighLow',
199 drivetrain_params=drivetrain_params)
200 self.drivetrain_high_high = VelocityDrivetrainModel(
201 left_low=False,
202 right_low=False,
203 name=name + 'HighHigh',
204 drivetrain_params=drivetrain_params)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800205
Tyler Chatow6738c362019-02-16 14:12:30 -0800206 # X is [lvel, rvel]
207 self.X = numpy.matrix([[0.0], [0.0]])
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800208
Tyler Chatow6738c362019-02-16 14:12:30 -0800209 self.U_poly = polytope.HPolytope(
210 numpy.matrix([[1, 0], [-1, 0], [0, 1], [0, -1]]),
211 numpy.matrix([[12], [12], [12], [12]]))
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800212
Tyler Chatow6738c362019-02-16 14:12:30 -0800213 self.U_max = numpy.matrix([[12.0], [12.0]])
214 self.U_min = numpy.matrix([[-12.0000000000], [-12.0000000000]])
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800215
Tyler Chatow6738c362019-02-16 14:12:30 -0800216 self.dt = 0.00505
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800217
Tyler Chatow6738c362019-02-16 14:12:30 -0800218 self.R = numpy.matrix([[0.0], [0.0]])
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800219
Tyler Chatow6738c362019-02-16 14:12:30 -0800220 self.U_ideal = numpy.matrix([[0.0], [0.0]])
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800221
Tyler Chatow6738c362019-02-16 14:12:30 -0800222 # ttrust is the comprimise between having full throttle negative inertia,
223 # and having no throttle negative inertia. A value of 0 is full throttle
224 # inertia. A value of 1 is no throttle negative inertia.
225 self.ttrust = 1.0
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800226
Tyler Chatow6738c362019-02-16 14:12:30 -0800227 self.left_gear = VelocityDrivetrain.LOW
228 self.right_gear = VelocityDrivetrain.LOW
229 self.left_shifter_position = 0.0
230 self.right_shifter_position = 0.0
231 self.left_cim = CIM()
232 self.right_cim = CIM()
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800233
Tyler Chatow6738c362019-02-16 14:12:30 -0800234 def IsInGear(self, gear):
235 return gear is VelocityDrivetrain.HIGH or gear is VelocityDrivetrain.LOW
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800236
Tyler Chatow6738c362019-02-16 14:12:30 -0800237 def MotorRPM(self, shifter_position, velocity):
238 if shifter_position > 0.5:
239 return (velocity / self.CurrentDrivetrain().G_high /
240 self.CurrentDrivetrain().r)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800241 else:
Tyler Chatow6738c362019-02-16 14:12:30 -0800242 return (velocity / self.CurrentDrivetrain().G_low /
243 self.CurrentDrivetrain().r)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800244
Tyler Chatow6738c362019-02-16 14:12:30 -0800245 def CurrentDrivetrain(self):
246 if self.left_shifter_position > 0.5:
247 if self.right_shifter_position > 0.5:
248 return self.drivetrain_high_high
249 else:
250 return self.drivetrain_high_low
251 else:
252 if self.right_shifter_position > 0.5:
253 return self.drivetrain_low_high
254 else:
255 return self.drivetrain_low_low
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800256
Tyler Chatow6738c362019-02-16 14:12:30 -0800257 def SimShifter(self, gear, shifter_position):
258 if gear is VelocityDrivetrain.HIGH or gear is VelocityDrivetrain.SHIFTING_UP:
259 shifter_position = min(shifter_position + 0.5, 1.0)
260 else:
261 shifter_position = max(shifter_position - 0.5, 0.0)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800262
Tyler Chatow6738c362019-02-16 14:12:30 -0800263 if shifter_position == 1.0:
264 gear = VelocityDrivetrain.HIGH
265 elif shifter_position == 0.0:
266 gear = VelocityDrivetrain.LOW
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800267
Tyler Chatow6738c362019-02-16 14:12:30 -0800268 return gear, shifter_position
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800269
Tyler Chatow6738c362019-02-16 14:12:30 -0800270 def ComputeGear(self,
271 wheel_velocity,
272 should_print=False,
273 current_gear=False,
274 gear_name=None):
275 high_omega = (wheel_velocity / self.CurrentDrivetrain().G_high /
276 self.CurrentDrivetrain().r)
277 low_omega = (wheel_velocity / self.CurrentDrivetrain().G_low /
278 self.CurrentDrivetrain().r)
279 #print gear_name, "Motor Energy Difference.", 0.5 * 0.000140032647 * (low_omega * low_omega - high_omega * high_omega), "joules"
280 high_torque = (
281 (12.0 - high_omega / self.CurrentDrivetrain().Kv) *
282 self.CurrentDrivetrain().Kt / self.CurrentDrivetrain().resistance)
283 low_torque = (
284 (12.0 - low_omega / self.CurrentDrivetrain().Kv) *
285 self.CurrentDrivetrain().Kt / self.CurrentDrivetrain().resistance)
286 high_power = high_torque * high_omega
287 low_power = low_torque * low_omega
288 #if should_print:
289 # print gear_name, "High omega", high_omega, "Low omega", low_omega
290 # print gear_name, "High torque", high_torque, "Low torque", low_torque
291 # print gear_name, "High power", high_power, "Low power", low_power
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800292
Tyler Chatow6738c362019-02-16 14:12:30 -0800293 # Shift algorithm improvements.
294 # TODO(aschuh):
295 # It takes time to shift. Shifting down for 1 cycle doesn't make sense
296 # because you will end up slower than without shifting. Figure out how
297 # to include that info.
298 # If the driver is still in high gear, but isn't asking for the extra power
299 # from low gear, don't shift until he asks for it.
300 goal_gear_is_high = high_power > low_power
301 #goal_gear_is_high = True
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800302
Tyler Chatow6738c362019-02-16 14:12:30 -0800303 if not self.IsInGear(current_gear):
304 glog.debug('%s Not in gear.', gear_name)
305 return current_gear
306 else:
307 is_high = current_gear is VelocityDrivetrain.HIGH
308 if is_high != goal_gear_is_high:
309 if goal_gear_is_high:
310 glog.debug('%s Shifting up.', gear_name)
311 return VelocityDrivetrain.SHIFTING_UP
312 else:
313 glog.debug('%s Shifting down.', gear_name)
314 return VelocityDrivetrain.SHIFTING_DOWN
315 else:
316 return current_gear
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800317
Tyler Chatow6738c362019-02-16 14:12:30 -0800318 def FilterVelocity(self, throttle):
319 # Invert the plant to figure out how the velocity filter would have to work
320 # out in order to filter out the forwards negative inertia.
321 # This math assumes that the left and right power and velocity are equal.
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800322
Tyler Chatow6738c362019-02-16 14:12:30 -0800323 # The throttle filter should filter such that the motor in the highest gear
324 # should be controlling the time constant.
325 # Do this by finding the index of FF that has the lowest value, and computing
326 # the sums using that index.
327 FF_sum = self.CurrentDrivetrain().FF.sum(axis=1)
328 min_FF_sum_index = numpy.argmin(FF_sum)
329 min_FF_sum = FF_sum[min_FF_sum_index, 0]
330 min_K_sum = self.CurrentDrivetrain().K[min_FF_sum_index, :].sum()
331 # Compute the FF sum for high gear.
332 high_min_FF_sum = self.drivetrain_high_high.FF[0, :].sum()
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800333
Tyler Chatow6738c362019-02-16 14:12:30 -0800334 # U = self.K[0, :].sum() * (R - x_avg) + self.FF[0, :].sum() * R
335 # throttle * 12.0 = (self.K[0, :].sum() + self.FF[0, :].sum()) * R
336 # - self.K[0, :].sum() * x_avg
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800337
Tyler Chatow6738c362019-02-16 14:12:30 -0800338 # R = (throttle * 12.0 + self.K[0, :].sum() * x_avg) /
339 # (self.K[0, :].sum() + self.FF[0, :].sum())
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800340
Tyler Chatow6738c362019-02-16 14:12:30 -0800341 # U = (K + FF) * R - K * X
342 # (K + FF) ^-1 * (U + K * X) = R
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800343
Tyler Chatow6738c362019-02-16 14:12:30 -0800344 # Scale throttle by min_FF_sum / high_min_FF_sum. This will make low gear
345 # have the same velocity goal as high gear, and so that the robot will hold
346 # the same speed for the same throttle for all gears.
347 adjusted_ff_voltage = numpy.clip(
348 throttle * 12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0)
349 return ((adjusted_ff_voltage + self.ttrust * min_K_sum *
350 (self.X[0, 0] + self.X[1, 0]) / 2.0) /
351 (self.ttrust * min_K_sum + min_FF_sum))
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800352
Tyler Chatow6738c362019-02-16 14:12:30 -0800353 def Update(self, throttle, steering):
354 # Shift into the gear which sends the most power to the floor.
355 # This is the same as sending the most torque down to the floor at the
356 # wheel.
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800357
Tyler Chatow6738c362019-02-16 14:12:30 -0800358 self.left_gear = self.right_gear = True
359 if True:
360 self.left_gear = self.ComputeGear(
361 self.X[0, 0],
362 should_print=True,
363 current_gear=self.left_gear,
364 gear_name="left")
365 self.right_gear = self.ComputeGear(
366 self.X[1, 0],
367 should_print=True,
368 current_gear=self.right_gear,
369 gear_name="right")
370 if self.IsInGear(self.left_gear):
371 self.left_cim.X[0, 0] = self.MotorRPM(
372 self.left_shifter_position, self.X[0, 0])
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800373
Tyler Chatow6738c362019-02-16 14:12:30 -0800374 if self.IsInGear(self.right_gear):
375 self.right_cim.X[0, 0] = self.MotorRPM(
376 self.right_shifter_position, self.X[0, 0])
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800377
Tyler Chatow6738c362019-02-16 14:12:30 -0800378 if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
379 # Filter the throttle to provide a nicer response.
380 fvel = self.FilterVelocity(throttle)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800381
Tyler Chatow6738c362019-02-16 14:12:30 -0800382 # Constant radius means that angualar_velocity / linear_velocity = constant.
383 # Compute the left and right velocities.
384 steering_velocity = numpy.abs(fvel) * steering
385 left_velocity = fvel - steering_velocity
386 right_velocity = fvel + steering_velocity
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800387
Tyler Chatow6738c362019-02-16 14:12:30 -0800388 # Write this constraint in the form of K * R = w
389 # angular velocity / linear velocity = constant
390 # (left - right) / (left + right) = constant
391 # left - right = constant * left + constant * right
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800392
Tyler Chatow6738c362019-02-16 14:12:30 -0800393 # (fvel - steering * numpy.abs(fvel) - fvel - steering * numpy.abs(fvel)) /
394 # (fvel - steering * numpy.abs(fvel) + fvel + steering * numpy.abs(fvel)) =
395 # constant
396 # (- 2 * steering * numpy.abs(fvel)) / (2 * fvel) = constant
397 # (-steering * sign(fvel)) = constant
398 # (-steering * sign(fvel)) * (left + right) = left - right
399 # (steering * sign(fvel) + 1) * left + (steering * sign(fvel) - 1) * right = 0
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800400
Tyler Chatow6738c362019-02-16 14:12:30 -0800401 equality_k = numpy.matrix([[
402 1 + steering * numpy.sign(fvel),
403 -(1 - steering * numpy.sign(fvel))
404 ]])
405 equality_w = 0.0
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800406
Tyler Chatow6738c362019-02-16 14:12:30 -0800407 self.R[0, 0] = left_velocity
408 self.R[1, 0] = right_velocity
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800409
Tyler Chatow6738c362019-02-16 14:12:30 -0800410 # Construct a constraint on R by manipulating the constraint on U
411 # Start out with H * U <= k
412 # U = FF * R + K * (R - X)
413 # H * (FF * R + K * R - K * X) <= k
414 # H * (FF + K) * R <= k + H * K * X
415 R_poly = polytope.HPolytope(
416 self.U_poly.H *
417 (self.CurrentDrivetrain().K + self.CurrentDrivetrain().FF),
418 self.U_poly.k +
419 self.U_poly.H * self.CurrentDrivetrain().K * self.X)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800420
Tyler Chatow6738c362019-02-16 14:12:30 -0800421 # Limit R back inside the box.
422 self.boxed_R = CoerceGoal(R_poly, equality_k, equality_w, self.R)
423
424 FF_volts = self.CurrentDrivetrain().FF * self.boxed_R
425 self.U_ideal = self.CurrentDrivetrain().K * (
426 self.boxed_R - self.X) + FF_volts
427 else:
428 glog.debug('Not all in gear')
429 if not self.IsInGear(self.left_gear) and not self.IsInGear(
430 self.right_gear):
431 # TODO(austin): Use battery volts here.
Ravago Jones26f7ad02021-02-05 15:45:59 -0800432 R_left = self.MotorRPM(self.left_shifter_position,
433 self.X[0, 0])
Tyler Chatow6738c362019-02-16 14:12:30 -0800434 self.U_ideal[0, 0] = numpy.clip(
435 self.left_cim.K * (R_left - self.left_cim.X) +
436 R_left / self.left_cim.Kv, self.left_cim.U_min,
437 self.left_cim.U_max)
438 self.left_cim.Update(self.U_ideal[0, 0])
439
440 R_right = self.MotorRPM(self.right_shifter_position,
441 self.X[1, 0])
442 self.U_ideal[1, 0] = numpy.clip(
443 self.right_cim.K * (R_right - self.right_cim.X) +
444 R_right / self.right_cim.Kv, self.right_cim.U_min,
445 self.right_cim.U_max)
446 self.right_cim.Update(self.U_ideal[1, 0])
447 else:
448 assert False
449
450 self.U = numpy.clip(self.U_ideal, self.U_min, self.U_max)
451
452 # TODO(austin): Model the robot as not accelerating when you shift...
453 # This hack only works when you shift at the same time.
454 if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
455 self.X = self.CurrentDrivetrain(
456 ).A * self.X + self.CurrentDrivetrain().B * self.U
457
458 self.left_gear, self.left_shifter_position = self.SimShifter(
459 self.left_gear, self.left_shifter_position)
460 self.right_gear, self.right_shifter_position = self.SimShifter(
461 self.right_gear, self.right_shifter_position)
462
463 glog.debug('U is %s %s', str(self.U[0, 0]), str(self.U[1, 0]))
464 glog.debug('Left shifter %s %d Right shifter %s %d', self.left_gear,
465 self.left_shifter_position, self.right_gear,
466 self.right_shifter_position)
467
468
469def WritePolyDrivetrain(drivetrain_files,
470 motor_files,
471 hybrid_files,
472 year_namespace,
473 drivetrain_params,
Austin Schuh74425152018-12-21 11:37:14 +1100474 scalar_type='double'):
Tyler Chatow6738c362019-02-16 14:12:30 -0800475 vdrivetrain = VelocityDrivetrain(drivetrain_params)
476 hybrid_vdrivetrain = VelocityDrivetrain(
477 drivetrain_params, name="HybridVelocityDrivetrain")
478 if isinstance(year_namespace, list):
479 namespaces = year_namespace
480 else:
481 namespaces = [year_namespace, 'control_loops', 'drivetrain']
482 dog_loop_writer = control_loop.ControlLoopWriter(
483 "VelocityDrivetrain", [
484 vdrivetrain.drivetrain_low_low, vdrivetrain.drivetrain_low_high,
485 vdrivetrain.drivetrain_high_low, vdrivetrain.drivetrain_high_high
486 ],
487 namespaces=namespaces,
488 scalar_type=scalar_type)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800489
Tyler Chatow6738c362019-02-16 14:12:30 -0800490 dog_loop_writer.Write(drivetrain_files[0], drivetrain_files[1])
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800491
Tyler Chatow6738c362019-02-16 14:12:30 -0800492 hybrid_loop_writer = control_loop.ControlLoopWriter(
493 "HybridVelocityDrivetrain", [
494 hybrid_vdrivetrain.drivetrain_low_low,
495 hybrid_vdrivetrain.drivetrain_low_high,
496 hybrid_vdrivetrain.drivetrain_high_low,
497 hybrid_vdrivetrain.drivetrain_high_high
498 ],
499 namespaces=namespaces,
500 scalar_type=scalar_type,
501 plant_type='StateFeedbackHybridPlant',
502 observer_type='HybridKalman')
Austin Schuh74425152018-12-21 11:37:14 +1100503
Tyler Chatow6738c362019-02-16 14:12:30 -0800504 hybrid_loop_writer.Write(hybrid_files[0], hybrid_files[1])
Austin Schuh74425152018-12-21 11:37:14 +1100505
Tyler Chatow6738c362019-02-16 14:12:30 -0800506 cim_writer = control_loop.ControlLoopWriter(
507 "CIM", [CIM()], scalar_type=scalar_type)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800508
Tyler Chatow6738c362019-02-16 14:12:30 -0800509 cim_writer.Write(motor_files[0], motor_files[1])
510
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800511
512def PlotPolyDrivetrainMotions(drivetrain_params):
Tyler Chatow6738c362019-02-16 14:12:30 -0800513 vdrivetrain = VelocityDrivetrain(drivetrain_params)
514 vl_plot = []
515 vr_plot = []
516 ul_plot = []
517 ur_plot = []
518 radius_plot = []
519 t_plot = []
520 left_gear_plot = []
521 right_gear_plot = []
522 vdrivetrain.left_shifter_position = 0.0
523 vdrivetrain.right_shifter_position = 0.0
524 vdrivetrain.left_gear = VelocityDrivetrain.LOW
525 vdrivetrain.right_gear = VelocityDrivetrain.LOW
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800526
Tyler Chatow6738c362019-02-16 14:12:30 -0800527 glog.debug('K is %s', str(vdrivetrain.CurrentDrivetrain().K))
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800528
Tyler Chatow6738c362019-02-16 14:12:30 -0800529 if vdrivetrain.left_gear is VelocityDrivetrain.HIGH:
530 glog.debug('Left is high')
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800531 else:
Tyler Chatow6738c362019-02-16 14:12:30 -0800532 glog.debug('Left is low')
533 if vdrivetrain.right_gear is VelocityDrivetrain.HIGH:
534 glog.debug('Right is high')
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800535 else:
Tyler Chatow6738c362019-02-16 14:12:30 -0800536 glog.debug('Right is low')
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800537
Tyler Chatow6738c362019-02-16 14:12:30 -0800538 for t in numpy.arange(0, 1.7, vdrivetrain.dt):
539 if t < 0.5:
540 vdrivetrain.Update(throttle=0.00, steering=1.0)
541 elif t < 1.2:
542 vdrivetrain.Update(throttle=0.5, steering=1.0)
543 else:
544 vdrivetrain.Update(throttle=0.00, steering=1.0)
545 t_plot.append(t)
546 vl_plot.append(vdrivetrain.X[0, 0])
547 vr_plot.append(vdrivetrain.X[1, 0])
548 ul_plot.append(vdrivetrain.U[0, 0])
549 ur_plot.append(vdrivetrain.U[1, 0])
550 left_gear_plot.append(
551 (vdrivetrain.left_gear is VelocityDrivetrain.HIGH) * 2.0 - 10.0)
552 right_gear_plot.append(
553 (vdrivetrain.right_gear is VelocityDrivetrain.HIGH) * 2.0 - 10.0)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800554
Tyler Chatow6738c362019-02-16 14:12:30 -0800555 fwd_velocity = (vdrivetrain.X[1, 0] + vdrivetrain.X[0, 0]) / 2
556 turn_velocity = (vdrivetrain.X[1, 0] - vdrivetrain.X[0, 0])
557 if abs(fwd_velocity) < 0.0000001:
558 radius_plot.append(turn_velocity)
559 else:
560 radius_plot.append(turn_velocity / fwd_velocity)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800561
Tyler Chatow6738c362019-02-16 14:12:30 -0800562 # TODO(austin):
563 # Shifting compensation.
564
565 # Tighten the turn.
566 # Closed loop drive.
567
568 pylab.plot(t_plot, vl_plot, label='left velocity')
569 pylab.plot(t_plot, vr_plot, label='right velocity')
570 pylab.plot(t_plot, ul_plot, label='left voltage')
571 pylab.plot(t_plot, ur_plot, label='right voltage')
572 pylab.plot(t_plot, radius_plot, label='radius')
573 pylab.plot(t_plot, left_gear_plot, label='left gear high')
574 pylab.plot(t_plot, right_gear_plot, label='right gear high')
575 pylab.legend()
576 pylab.show()