Austin Schuh | 48d60c1 | 2017-02-04 21:58:58 -0800 | [diff] [blame^] | 1 | #!/usr/bin/python |
| 2 | |
| 3 | from frc971.control_loops.python import control_loop |
| 4 | from frc971.control_loops.python import controls |
| 5 | import numpy |
| 6 | import sys |
| 7 | from matplotlib import pylab |
| 8 | |
| 9 | import gflags |
| 10 | import glog |
| 11 | |
| 12 | FLAGS = gflags.FLAGS |
| 13 | |
| 14 | gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.') |
| 15 | |
| 16 | class VelocityShooter(control_loop.ControlLoop): |
| 17 | def __init__(self, name='VelocityShooter'): |
| 18 | super(VelocityShooter, self).__init__(name) |
| 19 | # Number of motors |
| 20 | self.num_motors = 2.0 |
| 21 | # Stall Torque in N m |
| 22 | self.stall_torque = 0.71 * self.num_motors |
| 23 | # Stall Current in Amps |
| 24 | self.stall_current = 134.0 * self.num_motors |
| 25 | # Free Speed in RPM |
| 26 | self.free_speed = 18730.0 |
| 27 | # Free Current in Amps |
| 28 | self.free_current = 0.7 * self.num_motors |
| 29 | # Moment of inertia of the shooter wheel in kg m^2 |
| 30 | # 1400.6 grams/cm^2 |
| 31 | # 1.407 *1e-4 kg m^2 |
| 32 | self.J = 0.00080 |
| 33 | # Resistance of the motor, divided by 2 to account for the 2 motors |
| 34 | self.R = 12.0 / self.stall_current |
| 35 | # Motor velocity constant |
| 36 | self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) / |
| 37 | (12.0 - self.R * self.free_current)) |
| 38 | # Torque constant |
| 39 | self.Kt = self.stall_torque / self.stall_current |
| 40 | # Gear ratio |
| 41 | self.G = 12.0 / 36.0 |
| 42 | # Control loop time step |
| 43 | self.dt = 0.005 |
| 44 | |
| 45 | # State feedback matrices |
| 46 | # [angular velocity] |
| 47 | self.A_continuous = numpy.matrix( |
| 48 | [[-self.Kt / (self.Kv * self.J * self.G * self.G * self.R)]]) |
| 49 | self.B_continuous = numpy.matrix( |
| 50 | [[self.Kt / (self.J * self.G * self.R)]]) |
| 51 | self.C = numpy.matrix([[1]]) |
| 52 | self.D = numpy.matrix([[0]]) |
| 53 | |
| 54 | self.A, self.B = self.ContinuousToDiscrete( |
| 55 | self.A_continuous, self.B_continuous, self.dt) |
| 56 | |
| 57 | self.PlaceControllerPoles([.90]) |
| 58 | |
| 59 | self.PlaceObserverPoles([0.3]) |
| 60 | |
| 61 | self.U_max = numpy.matrix([[12.0]]) |
| 62 | self.U_min = numpy.matrix([[-12.0]]) |
| 63 | |
| 64 | qff_vel = 8.0 |
| 65 | self.Qff = numpy.matrix([[1.0 / (qff_vel ** 2.0)]]) |
| 66 | |
| 67 | self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff) |
| 68 | self.InitializeState() |
| 69 | |
| 70 | |
| 71 | class Shooter(VelocityShooter): |
| 72 | def __init__(self, name='Shooter'): |
| 73 | super(Shooter, self).__init__(name) |
| 74 | |
| 75 | self.A_continuous_unaugmented = self.A_continuous |
| 76 | self.B_continuous_unaugmented = self.B_continuous |
| 77 | |
| 78 | self.A_continuous = numpy.matrix(numpy.zeros((2, 2))) |
| 79 | self.A_continuous[1:2, 1:2] = self.A_continuous_unaugmented |
| 80 | self.A_continuous[0, 1] = 1 |
| 81 | |
| 82 | self.B_continuous = numpy.matrix(numpy.zeros((2, 1))) |
| 83 | self.B_continuous[1:2, 0] = self.B_continuous_unaugmented |
| 84 | |
| 85 | # State feedback matrices |
| 86 | # [position, angular velocity] |
| 87 | self.C = numpy.matrix([[1, 0]]) |
| 88 | self.D = numpy.matrix([[0]]) |
| 89 | |
| 90 | self.A, self.B = self.ContinuousToDiscrete( |
| 91 | self.A_continuous, self.B_continuous, self.dt) |
| 92 | |
| 93 | self.rpl = .45 |
| 94 | self.ipl = 0.07 |
| 95 | self.PlaceObserverPoles([self.rpl + 1j * self.ipl, |
| 96 | self.rpl - 1j * self.ipl]) |
| 97 | |
| 98 | self.K_unaugmented = self.K |
| 99 | self.K = numpy.matrix(numpy.zeros((1, 2))) |
| 100 | self.K[0, 1:2] = self.K_unaugmented |
| 101 | self.Kff_unaugmented = self.Kff |
| 102 | self.Kff = numpy.matrix(numpy.zeros((1, 2))) |
| 103 | self.Kff[0, 1:2] = self.Kff_unaugmented |
| 104 | |
| 105 | self.InitializeState() |
| 106 | |
| 107 | |
| 108 | class IntegralShooter(Shooter): |
| 109 | def __init__(self, name='IntegralShooter'): |
| 110 | super(IntegralShooter, self).__init__(name=name) |
| 111 | |
| 112 | self.A_continuous_unaugmented = self.A_continuous |
| 113 | self.B_continuous_unaugmented = self.B_continuous |
| 114 | |
| 115 | self.A_continuous = numpy.matrix(numpy.zeros((3, 3))) |
| 116 | self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented |
| 117 | self.A_continuous[0:2, 2] = self.B_continuous_unaugmented |
| 118 | |
| 119 | self.B_continuous = numpy.matrix(numpy.zeros((3, 1))) |
| 120 | self.B_continuous[0:2, 0] = self.B_continuous_unaugmented |
| 121 | |
| 122 | self.C_unaugmented = self.C |
| 123 | self.C = numpy.matrix(numpy.zeros((1, 3))) |
| 124 | self.C[0:1, 0:2] = self.C_unaugmented |
| 125 | |
| 126 | self.A, self.B = self.ContinuousToDiscrete( |
| 127 | self.A_continuous, self.B_continuous, self.dt) |
| 128 | |
| 129 | q_pos = 2.0 |
| 130 | q_vel = 0.001 |
| 131 | q_voltage = 10.0 |
| 132 | self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0], |
| 133 | [0.0, (q_vel ** 2.0), 0.0], |
| 134 | [0.0, 0.0, (q_voltage ** 2.0)]]) |
| 135 | |
| 136 | r_pos = 0.001 |
| 137 | self.R = numpy.matrix([[(r_pos ** 2.0)]]) |
| 138 | |
| 139 | self.KalmanGain, self.Q_steady = controls.kalman( |
| 140 | A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R) |
| 141 | self.L = self.A * self.KalmanGain |
| 142 | |
| 143 | self.K_unaugmented = self.K |
| 144 | self.K = numpy.matrix(numpy.zeros((1, 3))) |
| 145 | self.K[0, 0:2] = self.K_unaugmented |
| 146 | self.K[0, 2] = 1 |
| 147 | self.Kff_unaugmented = self.Kff |
| 148 | self.Kff = numpy.matrix(numpy.zeros((1, 3))) |
| 149 | self.Kff[0, 0:2] = self.Kff_unaugmented |
| 150 | |
| 151 | self.InitializeState() |
| 152 | |
| 153 | |
| 154 | class ScenarioPlotter(object): |
| 155 | def __init__(self): |
| 156 | # Various lists for graphing things. |
| 157 | self.t = [] |
| 158 | self.x = [] |
| 159 | self.v = [] |
| 160 | self.a = [] |
| 161 | self.x_hat = [] |
| 162 | self.u = [] |
| 163 | self.offset = [] |
| 164 | |
| 165 | def run_test(self, shooter, goal, iterations=200, controller_shooter=None, |
| 166 | observer_shooter=None): |
| 167 | """Runs the shooter plant with an initial condition and goal. |
| 168 | |
| 169 | Args: |
| 170 | shooter: Shooter object to use. |
| 171 | goal: goal state. |
| 172 | iterations: Number of timesteps to run the model for. |
| 173 | controller_shooter: Shooter object to get K from, or None if we should |
| 174 | use shooter. |
| 175 | observer_shooter: Shooter object to use for the observer, or None if we |
| 176 | should use the actual state. |
| 177 | """ |
| 178 | |
| 179 | if controller_shooter is None: |
| 180 | controller_shooter = shooter |
| 181 | |
| 182 | vbat = 12.0 |
| 183 | |
| 184 | if self.t: |
| 185 | initial_t = self.t[-1] + shooter.dt |
| 186 | else: |
| 187 | initial_t = 0 |
| 188 | |
| 189 | for i in xrange(iterations): |
| 190 | X_hat = shooter.X |
| 191 | |
| 192 | if observer_shooter is not None: |
| 193 | X_hat = observer_shooter.X_hat |
| 194 | self.x_hat.append(observer_shooter.X_hat[1, 0]) |
| 195 | |
| 196 | ff_U = controller_shooter.Kff * (goal - observer_shooter.A * goal) |
| 197 | |
| 198 | U = controller_shooter.K * (goal - X_hat) + ff_U |
| 199 | U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat) |
| 200 | self.x.append(shooter.X[0, 0]) |
| 201 | |
| 202 | |
| 203 | if self.v: |
| 204 | last_v = self.v[-1] |
| 205 | else: |
| 206 | last_v = 0 |
| 207 | |
| 208 | self.v.append(shooter.X[1, 0]) |
| 209 | self.a.append((self.v[-1] - last_v) / shooter.dt) |
| 210 | |
| 211 | if observer_shooter is not None: |
| 212 | observer_shooter.Y = shooter.Y |
| 213 | observer_shooter.CorrectObserver(U) |
| 214 | self.offset.append(observer_shooter.X_hat[2, 0]) |
| 215 | |
| 216 | applied_U = U.copy() |
| 217 | if i > 30: |
| 218 | applied_U += 2 |
| 219 | shooter.Update(applied_U) |
| 220 | |
| 221 | if observer_shooter is not None: |
| 222 | observer_shooter.PredictObserver(U) |
| 223 | |
| 224 | self.t.append(initial_t + i * shooter.dt) |
| 225 | self.u.append(U[0, 0]) |
| 226 | |
| 227 | glog.debug('Time: %f', self.t[-1]) |
| 228 | |
| 229 | def Plot(self): |
| 230 | pylab.subplot(3, 1, 1) |
| 231 | pylab.plot(self.t, self.v, label='x') |
| 232 | pylab.plot(self.t, self.x_hat, label='x_hat') |
| 233 | pylab.legend() |
| 234 | |
| 235 | pylab.subplot(3, 1, 2) |
| 236 | pylab.plot(self.t, self.u, label='u') |
| 237 | pylab.plot(self.t, self.offset, label='voltage_offset') |
| 238 | pylab.legend() |
| 239 | |
| 240 | pylab.subplot(3, 1, 3) |
| 241 | pylab.plot(self.t, self.a, label='a') |
| 242 | pylab.legend() |
| 243 | |
| 244 | pylab.show() |
| 245 | |
| 246 | |
| 247 | def main(argv): |
| 248 | scenario_plotter = ScenarioPlotter() |
| 249 | |
| 250 | shooter = Shooter() |
| 251 | shooter_controller = IntegralShooter() |
| 252 | observer_shooter = IntegralShooter() |
| 253 | |
| 254 | initial_X = numpy.matrix([[0.0], [0.0]]) |
| 255 | R = numpy.matrix([[0.0], [100.0], [0.0]]) |
| 256 | scenario_plotter.run_test(shooter, goal=R, controller_shooter=shooter_controller, |
| 257 | observer_shooter=observer_shooter, iterations=200) |
| 258 | |
| 259 | if FLAGS.plot: |
| 260 | scenario_plotter.Plot() |
| 261 | |
| 262 | if len(argv) != 5: |
| 263 | glog.fatal('Expected .h file name and .cc file name') |
| 264 | else: |
| 265 | namespaces = ['y2017', 'control_loops', 'superstructure', 'shooter'] |
| 266 | shooter = Shooter('Shooter') |
| 267 | loop_writer = control_loop.ControlLoopWriter('Shooter', [shooter], |
| 268 | namespaces=namespaces) |
| 269 | loop_writer.Write(argv[1], argv[2]) |
| 270 | |
| 271 | integral_shooter = IntegralShooter('IntegralShooter') |
| 272 | integral_loop_writer = control_loop.ControlLoopWriter( |
| 273 | 'IntegralShooter', [integral_shooter], namespaces=namespaces) |
| 274 | integral_loop_writer.Write(argv[3], argv[4]) |
| 275 | |
| 276 | |
| 277 | if __name__ == '__main__': |
| 278 | argv = FLAGS(sys.argv) |
| 279 | glog.init() |
| 280 | sys.exit(main(argv)) |