blob: a5088cbc710ffa4c7dda787e5b0587b9f9fcb513 [file] [log] [blame]
Austin Schuh48d60c12017-02-04 21:58:58 -08001#!/usr/bin/python
2
3from frc971.control_loops.python import control_loop
4from frc971.control_loops.python import controls
5import numpy
6import sys
7from matplotlib import pylab
8
9import gflags
10import glog
11
12FLAGS = gflags.FLAGS
13
14gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
15
16class VelocityIndexer(control_loop.ControlLoop):
17 def __init__(self, name='VelocityIndexer'):
18 super(VelocityIndexer, self).__init__(name)
19 # Stall Torque in N m
20 self.stall_torque = 0.71
21 # Stall Current in Amps
22 self.stall_current = 134
23 # Free Speed in RPM
24 self.free_speed = 18730.0
25 # Free Current in Amps
26 self.free_current = 0.7
27 # Moment of inertia of the indexer halves in kg m^2
28 # This is measured as Iyy in CAD (the moment of inertia around the Y axis).
29 # Inner part of indexer -> Iyy = 59500 lb * mm * mm
30 # Inner spins with 12 / 48 * 18 / 48 * 24 / 36 * 16 / 72
31 # Outer part of indexer -> Iyy = 210000 lb * mm * mm
32 # 1 775 pro -> 12 / 48 * 18 / 48 * 30 / 422
33
34 self.J_inner = 0.0269
35 self.J_outer = 0.0952
36 # Gear ratios for the inner and outer parts.
37 self.G_inner = (12.0 / 48.0) * (18.0 / 48.0) * (24.0 / 36.0) * (16.0 / 72.0)
38 self.G_outer = (12.0 / 48.0) * (18.0 / 48.0) * (30.0 / 422.0)
39
40 # Motor inertia in kg * m^2
41 self.motor_inertia = 0.000006
42
43 # The output coordinate system is in radians for the inner part of the
44 # indexer.
45 # Compute the effective moment of inertia assuming all the mass is in that
46 # coordinate system.
47 self.J = (
48 self.J_inner * self.G_inner * self.G_inner +
49 self.J_outer * self.G_outer * self.G_outer) / (self.G_inner * self.G_inner) + \
50 self.motor_inertia * ((1.0 / self.G_inner) ** 2.0)
51 glog.debug('J is %f', self.J)
52 self.G = self.G_inner
53
54 # Resistance of the motor, divided by 2 to account for the 2 motors
55 self.R = 12.0 / self.stall_current
56 # Motor velocity constant
57 self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
58 (12.0 - self.R * self.free_current))
59 # Torque constant
60 self.Kt = self.stall_torque / self.stall_current
61 # Control loop time step
62 self.dt = 0.005
63
64 # State feedback matrices
65 # [angular velocity]
66 self.A_continuous = numpy.matrix(
67 [[-self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
68 self.B_continuous = numpy.matrix(
69 [[self.Kt / (self.J * self.G * self.R)]])
70 self.C = numpy.matrix([[1]])
71 self.D = numpy.matrix([[0]])
72
73 self.A, self.B = self.ContinuousToDiscrete(
74 self.A_continuous, self.B_continuous, self.dt)
75
76 self.PlaceControllerPoles([.82])
77 glog.debug(repr(self.K))
78
79 self.PlaceObserverPoles([0.3])
80
81 self.U_max = numpy.matrix([[12.0]])
82 self.U_min = numpy.matrix([[-12.0]])
83
84 qff_vel = 8.0
85 self.Qff = numpy.matrix([[1.0 / (qff_vel ** 2.0)]])
86
87 self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
88 self.InitializeState()
89
90
91class Indexer(VelocityIndexer):
92 def __init__(self, name='Indexer'):
93 super(Indexer, self).__init__(name)
94
95 self.A_continuous_unaugmented = self.A_continuous
96 self.B_continuous_unaugmented = self.B_continuous
97
98 self.A_continuous = numpy.matrix(numpy.zeros((2, 2)))
99 self.A_continuous[1:2, 1:2] = self.A_continuous_unaugmented
100 self.A_continuous[0, 1] = 1
101
102 self.B_continuous = numpy.matrix(numpy.zeros((2, 1)))
103 self.B_continuous[1:2, 0] = self.B_continuous_unaugmented
104
105 # State feedback matrices
106 # [position, angular velocity]
107 self.C = numpy.matrix([[1, 0]])
108 self.D = numpy.matrix([[0]])
109
110 self.A, self.B = self.ContinuousToDiscrete(
111 self.A_continuous, self.B_continuous, self.dt)
112
113 self.rpl = .45
114 self.ipl = 0.07
115 self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
116 self.rpl - 1j * self.ipl])
117
118 self.K_unaugmented = self.K
119 self.K = numpy.matrix(numpy.zeros((1, 2)))
120 self.K[0, 1:2] = self.K_unaugmented
121 self.Kff_unaugmented = self.Kff
122 self.Kff = numpy.matrix(numpy.zeros((1, 2)))
123 self.Kff[0, 1:2] = self.Kff_unaugmented
124
125 self.InitializeState()
126
127
128class IntegralIndexer(Indexer):
129 def __init__(self, name="IntegralIndexer"):
130 super(IntegralIndexer, self).__init__(name=name)
131
132 self.A_continuous_unaugmented = self.A_continuous
133 self.B_continuous_unaugmented = self.B_continuous
134
135 self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
136 self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented
137 self.A_continuous[0:2, 2] = self.B_continuous_unaugmented
138
139 self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
140 self.B_continuous[0:2, 0] = self.B_continuous_unaugmented
141
142 self.C_unaugmented = self.C
143 self.C = numpy.matrix(numpy.zeros((1, 3)))
144 self.C[0:1, 0:2] = self.C_unaugmented
145
146 self.A, self.B = self.ContinuousToDiscrete(
147 self.A_continuous, self.B_continuous, self.dt)
148
149 q_pos = 2.0
150 q_vel = 0.001
151 q_voltage = 10.0
152 self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0],
153 [0.0, (q_vel ** 2.0), 0.0],
154 [0.0, 0.0, (q_voltage ** 2.0)]])
155
156 r_pos = 0.001
157 self.R = numpy.matrix([[(r_pos ** 2.0)]])
158
159 self.KalmanGain, self.Q_steady = controls.kalman(
160 A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
161 self.L = self.A * self.KalmanGain
162
163 self.K_unaugmented = self.K
164 self.K = numpy.matrix(numpy.zeros((1, 3)))
165 self.K[0, 0:2] = self.K_unaugmented
166 self.K[0, 2] = 1
167 self.Kff_unaugmented = self.Kff
168 self.Kff = numpy.matrix(numpy.zeros((1, 3)))
169 self.Kff[0, 0:2] = self.Kff_unaugmented
170
171 self.InitializeState()
172
173
174class ScenarioPlotter(object):
175 def __init__(self):
176 # Various lists for graphing things.
177 self.t = []
178 self.x = []
179 self.v = []
180 self.a = []
181 self.x_hat = []
182 self.u = []
183 self.offset = []
184
185 def run_test(self, indexer, goal, iterations=200, controller_indexer=None,
186 observer_indexer=None):
187 """Runs the indexer plant with an initial condition and goal.
188
189 Args:
190 indexer: Indexer object to use.
191 goal: goal state.
192 iterations: Number of timesteps to run the model for.
193 controller_indexer: Indexer object to get K from, or None if we should
194 use indexer.
195 observer_indexer: Indexer object to use for the observer, or None if we
196 should use the actual state.
197 """
198
199 if controller_indexer is None:
200 controller_indexer = indexer
201
202 vbat = 12.0
203
204 if self.t:
205 initial_t = self.t[-1] + indexer.dt
206 else:
207 initial_t = 0
208
209 for i in xrange(iterations):
210 X_hat = indexer.X
211
212 if observer_indexer is not None:
213 X_hat = observer_indexer.X_hat
214 self.x_hat.append(observer_indexer.X_hat[1, 0])
215
216 ff_U = controller_indexer.Kff * (goal - observer_indexer.A * goal)
217
218 U = controller_indexer.K * (goal - X_hat) + ff_U
219 U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
220 self.x.append(indexer.X[0, 0])
221
222
223 if self.v:
224 last_v = self.v[-1]
225 else:
226 last_v = 0
227
228 self.v.append(indexer.X[1, 0])
229 self.a.append((self.v[-1] - last_v) / indexer.dt)
230
231 if observer_indexer is not None:
232 observer_indexer.Y = indexer.Y
233 observer_indexer.CorrectObserver(U)
234 self.offset.append(observer_indexer.X_hat[2, 0])
235
236 applied_U = U.copy()
237 if i > 30:
238 applied_U += 2
239 indexer.Update(applied_U)
240
241 if observer_indexer is not None:
242 observer_indexer.PredictObserver(U)
243
244 self.t.append(initial_t + i * indexer.dt)
245 self.u.append(U[0, 0])
246
247 def Plot(self):
248 pylab.subplot(3, 1, 1)
249 pylab.plot(self.t, self.v, label='x')
250 pylab.plot(self.t, self.x_hat, label='x_hat')
251 pylab.legend()
252
253 pylab.subplot(3, 1, 2)
254 pylab.plot(self.t, self.u, label='u')
255 pylab.plot(self.t, self.offset, label='voltage_offset')
256 pylab.legend()
257
258 pylab.subplot(3, 1, 3)
259 pylab.plot(self.t, self.a, label='a')
260 pylab.legend()
261
262 pylab.show()
263
264
265def main(argv):
266 scenario_plotter = ScenarioPlotter()
267
268 indexer = Indexer()
269 indexer_controller = IntegralIndexer()
270 observer_indexer = IntegralIndexer()
271
272 initial_X = numpy.matrix([[0.0], [0.0]])
273 R = numpy.matrix([[0.0], [20.0], [0.0]])
274 scenario_plotter.run_test(indexer, goal=R, controller_indexer=indexer_controller,
275 observer_indexer=observer_indexer, iterations=200)
276
277 if FLAGS.plot:
278 scenario_plotter.Plot()
279
280 if len(argv) != 5:
281 glog.fatal('Expected .h file name and .cc file name')
282 else:
283 namespaces = ['y2017', 'control_loops', 'superstructure', 'indexer']
284 indexer = Indexer('Indexer')
285 loop_writer = control_loop.ControlLoopWriter('Indexer', [indexer],
286 namespaces=namespaces)
287 loop_writer.Write(argv[1], argv[2])
288
289 integral_indexer = IntegralIndexer('IntegralIndexer')
290 integral_loop_writer = control_loop.ControlLoopWriter(
291 'IntegralIndexer', [integral_indexer], namespaces=namespaces)
292 integral_loop_writer.Write(argv[3], argv[4])
293
294
295if __name__ == '__main__':
296 argv = FLAGS(sys.argv)
297 glog.init()
298 sys.exit(main(argv))