Austin Schuh | 41baf20 | 2022-01-01 14:33:40 -0800 | [diff] [blame^] | 1 | /* |
| 2 | * The MIT License (MIT) |
| 3 | * |
| 4 | * Copyright (c) 2019 Ha Thach (tinyusb.org) |
| 5 | * |
| 6 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 7 | * of this software and associated documentation files (the "Software"), to deal |
| 8 | * in the Software without restriction, including without limitation the rights |
| 9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 10 | * copies of the Software, and to permit persons to whom the Software is |
| 11 | * furnished to do so, subject to the following conditions: |
| 12 | * |
| 13 | * The above copyright notice and this permission notice shall be included in |
| 14 | * all copies or substantial portions of the Software. |
| 15 | * |
| 16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 19 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 22 | * THE SOFTWARE. |
| 23 | * |
| 24 | * This file is part of the TinyUSB stack. |
| 25 | */ |
| 26 | |
| 27 | #include "tusb_option.h" |
| 28 | |
| 29 | #if (TUSB_OPT_DEVICE_ENABLED && CFG_TUD_CDC) |
| 30 | |
| 31 | #include "device/usbd.h" |
| 32 | #include "device/usbd_pvt.h" |
| 33 | |
| 34 | #include "cdc_device.h" |
| 35 | |
| 36 | //--------------------------------------------------------------------+ |
| 37 | // MACRO CONSTANT TYPEDEF |
| 38 | //--------------------------------------------------------------------+ |
| 39 | enum |
| 40 | { |
| 41 | BULK_PACKET_SIZE = (TUD_OPT_HIGH_SPEED ? 512 : 64) |
| 42 | }; |
| 43 | |
| 44 | typedef struct |
| 45 | { |
| 46 | uint8_t itf_num; |
| 47 | uint8_t ep_notif; |
| 48 | uint8_t ep_in; |
| 49 | uint8_t ep_out; |
| 50 | |
| 51 | // Bit 0: DTR (Data Terminal Ready), Bit 1: RTS (Request to Send) |
| 52 | uint8_t line_state; |
| 53 | |
| 54 | /*------------- From this point, data is not cleared by bus reset -------------*/ |
| 55 | char wanted_char; |
| 56 | cdc_line_coding_t line_coding; |
| 57 | |
| 58 | // FIFO |
| 59 | tu_fifo_t rx_ff; |
| 60 | tu_fifo_t tx_ff; |
| 61 | |
| 62 | uint8_t rx_ff_buf[CFG_TUD_CDC_RX_BUFSIZE]; |
| 63 | uint8_t tx_ff_buf[CFG_TUD_CDC_TX_BUFSIZE]; |
| 64 | |
| 65 | #if CFG_FIFO_MUTEX |
| 66 | osal_mutex_def_t rx_ff_mutex; |
| 67 | osal_mutex_def_t tx_ff_mutex; |
| 68 | #endif |
| 69 | |
| 70 | // Endpoint Transfer buffer |
| 71 | CFG_TUSB_MEM_ALIGN uint8_t epout_buf[CFG_TUD_CDC_EP_BUFSIZE]; |
| 72 | CFG_TUSB_MEM_ALIGN uint8_t epin_buf[CFG_TUD_CDC_EP_BUFSIZE]; |
| 73 | |
| 74 | }cdcd_interface_t; |
| 75 | |
| 76 | #define ITF_MEM_RESET_SIZE offsetof(cdcd_interface_t, wanted_char) |
| 77 | |
| 78 | //--------------------------------------------------------------------+ |
| 79 | // INTERNAL OBJECT & FUNCTION DECLARATION |
| 80 | //--------------------------------------------------------------------+ |
| 81 | CFG_TUSB_MEM_SECTION static cdcd_interface_t _cdcd_itf[CFG_TUD_CDC]; |
| 82 | |
| 83 | static bool _prep_out_transaction (cdcd_interface_t* p_cdc) |
| 84 | { |
| 85 | uint8_t const rhport = TUD_OPT_RHPORT; |
| 86 | uint16_t available = tu_fifo_remaining(&p_cdc->rx_ff); |
| 87 | |
| 88 | // Prepare for incoming data but only allow what we can store in the ring buffer. |
| 89 | // TODO Actually we can still carry out the transfer, keeping count of received bytes |
| 90 | // and slowly move it to the FIFO when read(). |
| 91 | // This pre-check reduces endpoint claiming |
| 92 | TU_VERIFY(available >= sizeof(p_cdc->epout_buf)); |
| 93 | |
| 94 | // claim endpoint |
| 95 | TU_VERIFY(usbd_edpt_claim(rhport, p_cdc->ep_out)); |
| 96 | |
| 97 | // fifo can be changed before endpoint is claimed |
| 98 | available = tu_fifo_remaining(&p_cdc->rx_ff); |
| 99 | |
| 100 | if ( available >= sizeof(p_cdc->epout_buf) ) |
| 101 | { |
| 102 | return usbd_edpt_xfer(rhport, p_cdc->ep_out, p_cdc->epout_buf, sizeof(p_cdc->epout_buf)); |
| 103 | }else |
| 104 | { |
| 105 | // Release endpoint since we don't make any transfer |
| 106 | usbd_edpt_release(rhport, p_cdc->ep_out); |
| 107 | |
| 108 | return false; |
| 109 | } |
| 110 | } |
| 111 | |
| 112 | //--------------------------------------------------------------------+ |
| 113 | // APPLICATION API |
| 114 | //--------------------------------------------------------------------+ |
| 115 | bool tud_cdc_n_connected(uint8_t itf) |
| 116 | { |
| 117 | // DTR (bit 0) active is considered as connected |
| 118 | return tud_ready() && tu_bit_test(_cdcd_itf[itf].line_state, 0); |
| 119 | } |
| 120 | |
| 121 | uint8_t tud_cdc_n_get_line_state (uint8_t itf) |
| 122 | { |
| 123 | return _cdcd_itf[itf].line_state; |
| 124 | } |
| 125 | |
| 126 | void tud_cdc_n_get_line_coding (uint8_t itf, cdc_line_coding_t* coding) |
| 127 | { |
| 128 | (*coding) = _cdcd_itf[itf].line_coding; |
| 129 | } |
| 130 | |
| 131 | void tud_cdc_n_set_wanted_char (uint8_t itf, char wanted) |
| 132 | { |
| 133 | _cdcd_itf[itf].wanted_char = wanted; |
| 134 | } |
| 135 | |
| 136 | |
| 137 | //--------------------------------------------------------------------+ |
| 138 | // READ API |
| 139 | //--------------------------------------------------------------------+ |
| 140 | uint32_t tud_cdc_n_available(uint8_t itf) |
| 141 | { |
| 142 | return tu_fifo_count(&_cdcd_itf[itf].rx_ff); |
| 143 | } |
| 144 | |
| 145 | uint32_t tud_cdc_n_read(uint8_t itf, void* buffer, uint32_t bufsize) |
| 146 | { |
| 147 | cdcd_interface_t* p_cdc = &_cdcd_itf[itf]; |
| 148 | uint32_t num_read = tu_fifo_read_n(&p_cdc->rx_ff, buffer, bufsize); |
| 149 | _prep_out_transaction(p_cdc); |
| 150 | return num_read; |
| 151 | } |
| 152 | |
| 153 | bool tud_cdc_n_peek(uint8_t itf, uint8_t* chr) |
| 154 | { |
| 155 | return tu_fifo_peek(&_cdcd_itf[itf].rx_ff, chr); |
| 156 | } |
| 157 | |
| 158 | void tud_cdc_n_read_flush (uint8_t itf) |
| 159 | { |
| 160 | cdcd_interface_t* p_cdc = &_cdcd_itf[itf]; |
| 161 | tu_fifo_clear(&p_cdc->rx_ff); |
| 162 | _prep_out_transaction(p_cdc); |
| 163 | } |
| 164 | |
| 165 | //--------------------------------------------------------------------+ |
| 166 | // WRITE API |
| 167 | //--------------------------------------------------------------------+ |
| 168 | uint32_t tud_cdc_n_write(uint8_t itf, void const* buffer, uint32_t bufsize) |
| 169 | { |
| 170 | cdcd_interface_t* p_cdc = &_cdcd_itf[itf]; |
| 171 | uint16_t ret = tu_fifo_write_n(&p_cdc->tx_ff, buffer, bufsize); |
| 172 | |
| 173 | // flush if queue more than packet size |
| 174 | if ( tu_fifo_count(&p_cdc->tx_ff) >= BULK_PACKET_SIZE ) |
| 175 | { |
| 176 | tud_cdc_n_write_flush(itf); |
| 177 | } |
| 178 | |
| 179 | return ret; |
| 180 | } |
| 181 | |
| 182 | uint32_t tud_cdc_n_write_flush (uint8_t itf) |
| 183 | { |
| 184 | cdcd_interface_t* p_cdc = &_cdcd_itf[itf]; |
| 185 | |
| 186 | // Skip if usb is not ready yet |
| 187 | TU_VERIFY( tud_ready(), 0 ); |
| 188 | |
| 189 | // No data to send |
| 190 | if ( !tu_fifo_count(&p_cdc->tx_ff) ) return 0; |
| 191 | |
| 192 | uint8_t const rhport = TUD_OPT_RHPORT; |
| 193 | |
| 194 | // Claim the endpoint |
| 195 | TU_VERIFY( usbd_edpt_claim(rhport, p_cdc->ep_in), 0 ); |
| 196 | |
| 197 | // Pull data from FIFO |
| 198 | uint16_t const count = tu_fifo_read_n(&p_cdc->tx_ff, p_cdc->epin_buf, sizeof(p_cdc->epin_buf)); |
| 199 | |
| 200 | if ( count ) |
| 201 | { |
| 202 | TU_ASSERT( usbd_edpt_xfer(rhport, p_cdc->ep_in, p_cdc->epin_buf, count), 0 ); |
| 203 | return count; |
| 204 | }else |
| 205 | { |
| 206 | // Release endpoint since we don't make any transfer |
| 207 | // Note: data is dropped if terminal is not connected |
| 208 | usbd_edpt_release(rhport, p_cdc->ep_in); |
| 209 | return 0; |
| 210 | } |
| 211 | } |
| 212 | |
| 213 | uint32_t tud_cdc_n_write_available (uint8_t itf) |
| 214 | { |
| 215 | return tu_fifo_remaining(&_cdcd_itf[itf].tx_ff); |
| 216 | } |
| 217 | |
| 218 | bool tud_cdc_n_write_clear (uint8_t itf) |
| 219 | { |
| 220 | return tu_fifo_clear(&_cdcd_itf[itf].tx_ff); |
| 221 | } |
| 222 | |
| 223 | //--------------------------------------------------------------------+ |
| 224 | // USBD Driver API |
| 225 | //--------------------------------------------------------------------+ |
| 226 | void cdcd_init(void) |
| 227 | { |
| 228 | tu_memclr(_cdcd_itf, sizeof(_cdcd_itf)); |
| 229 | |
| 230 | for(uint8_t i=0; i<CFG_TUD_CDC; i++) |
| 231 | { |
| 232 | cdcd_interface_t* p_cdc = &_cdcd_itf[i]; |
| 233 | |
| 234 | p_cdc->wanted_char = (char) -1; |
| 235 | |
| 236 | // default line coding is : stop bit = 1, parity = none, data bits = 8 |
| 237 | p_cdc->line_coding.bit_rate = 115200; |
| 238 | p_cdc->line_coding.stop_bits = 0; |
| 239 | p_cdc->line_coding.parity = 0; |
| 240 | p_cdc->line_coding.data_bits = 8; |
| 241 | |
| 242 | // Config RX fifo |
| 243 | tu_fifo_config(&p_cdc->rx_ff, p_cdc->rx_ff_buf, TU_ARRAY_SIZE(p_cdc->rx_ff_buf), 1, false); |
| 244 | |
| 245 | // Config TX fifo as overwritable at initialization and will be changed to non-overwritable |
| 246 | // if terminal supports DTR bit. Without DTR we do not know if data is actually polled by terminal. |
| 247 | // In this way, the most current data is prioritized. |
| 248 | tu_fifo_config(&p_cdc->tx_ff, p_cdc->tx_ff_buf, TU_ARRAY_SIZE(p_cdc->tx_ff_buf), 1, true); |
| 249 | |
| 250 | #if CFG_FIFO_MUTEX |
| 251 | tu_fifo_config_mutex(&p_cdc->rx_ff, NULL, osal_mutex_create(&p_cdc->rx_ff_mutex)); |
| 252 | tu_fifo_config_mutex(&p_cdc->tx_ff, osal_mutex_create(&p_cdc->tx_ff_mutex), NULL); |
| 253 | #endif |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | void cdcd_reset(uint8_t rhport) |
| 258 | { |
| 259 | (void) rhport; |
| 260 | |
| 261 | for(uint8_t i=0; i<CFG_TUD_CDC; i++) |
| 262 | { |
| 263 | cdcd_interface_t* p_cdc = &_cdcd_itf[i]; |
| 264 | |
| 265 | tu_memclr(p_cdc, ITF_MEM_RESET_SIZE); |
| 266 | tu_fifo_clear(&p_cdc->rx_ff); |
| 267 | tu_fifo_clear(&p_cdc->tx_ff); |
| 268 | tu_fifo_set_overwritable(&p_cdc->tx_ff, true); |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | uint16_t cdcd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len) |
| 273 | { |
| 274 | // Only support ACM subclass |
| 275 | TU_VERIFY( TUSB_CLASS_CDC == itf_desc->bInterfaceClass && |
| 276 | CDC_COMM_SUBCLASS_ABSTRACT_CONTROL_MODEL == itf_desc->bInterfaceSubClass, 0); |
| 277 | |
| 278 | // Find available interface |
| 279 | cdcd_interface_t * p_cdc = NULL; |
| 280 | for(uint8_t cdc_id=0; cdc_id<CFG_TUD_CDC; cdc_id++) |
| 281 | { |
| 282 | if ( _cdcd_itf[cdc_id].ep_in == 0 ) |
| 283 | { |
| 284 | p_cdc = &_cdcd_itf[cdc_id]; |
| 285 | break; |
| 286 | } |
| 287 | } |
| 288 | TU_ASSERT(p_cdc, 0); |
| 289 | |
| 290 | //------------- Control Interface -------------// |
| 291 | p_cdc->itf_num = itf_desc->bInterfaceNumber; |
| 292 | |
| 293 | uint16_t drv_len = sizeof(tusb_desc_interface_t); |
| 294 | uint8_t const * p_desc = tu_desc_next( itf_desc ); |
| 295 | |
| 296 | // Communication Functional Descriptors |
| 297 | while ( TUSB_DESC_CS_INTERFACE == tu_desc_type(p_desc) && drv_len <= max_len ) |
| 298 | { |
| 299 | drv_len += tu_desc_len(p_desc); |
| 300 | p_desc = tu_desc_next(p_desc); |
| 301 | } |
| 302 | |
| 303 | if ( TUSB_DESC_ENDPOINT == tu_desc_type(p_desc) ) |
| 304 | { |
| 305 | // notification endpoint |
| 306 | tusb_desc_endpoint_t const * desc_ep = (tusb_desc_endpoint_t const *) p_desc; |
| 307 | |
| 308 | TU_ASSERT( usbd_edpt_open(rhport, desc_ep), 0 ); |
| 309 | p_cdc->ep_notif = desc_ep->bEndpointAddress; |
| 310 | |
| 311 | drv_len += tu_desc_len(p_desc); |
| 312 | p_desc = tu_desc_next(p_desc); |
| 313 | } |
| 314 | |
| 315 | //------------- Data Interface (if any) -------------// |
| 316 | if ( (TUSB_DESC_INTERFACE == tu_desc_type(p_desc)) && |
| 317 | (TUSB_CLASS_CDC_DATA == ((tusb_desc_interface_t const *) p_desc)->bInterfaceClass) ) |
| 318 | { |
| 319 | // next to endpoint descriptor |
| 320 | drv_len += tu_desc_len(p_desc); |
| 321 | p_desc = tu_desc_next(p_desc); |
| 322 | |
| 323 | // Open endpoint pair |
| 324 | TU_ASSERT( usbd_open_edpt_pair(rhport, p_desc, 2, TUSB_XFER_BULK, &p_cdc->ep_out, &p_cdc->ep_in), 0 ); |
| 325 | |
| 326 | drv_len += 2*sizeof(tusb_desc_endpoint_t); |
| 327 | } |
| 328 | |
| 329 | // Prepare for incoming data |
| 330 | _prep_out_transaction(p_cdc); |
| 331 | |
| 332 | return drv_len; |
| 333 | } |
| 334 | |
| 335 | // Invoked when a control transfer occurred on an interface of this class |
| 336 | // Driver response accordingly to the request and the transfer stage (setup/data/ack) |
| 337 | // return false to stall control endpoint (e.g unsupported request) |
| 338 | bool cdcd_control_xfer_cb(uint8_t rhport, uint8_t stage, tusb_control_request_t const * request) |
| 339 | { |
| 340 | // Handle class request only |
| 341 | TU_VERIFY(request->bmRequestType_bit.type == TUSB_REQ_TYPE_CLASS); |
| 342 | |
| 343 | uint8_t itf = 0; |
| 344 | cdcd_interface_t* p_cdc = _cdcd_itf; |
| 345 | |
| 346 | // Identify which interface to use |
| 347 | for ( ; ; itf++, p_cdc++) |
| 348 | { |
| 349 | if (itf >= TU_ARRAY_SIZE(_cdcd_itf)) return false; |
| 350 | |
| 351 | if ( p_cdc->itf_num == request->wIndex ) break; |
| 352 | } |
| 353 | |
| 354 | switch ( request->bRequest ) |
| 355 | { |
| 356 | case CDC_REQUEST_SET_LINE_CODING: |
| 357 | if (stage == CONTROL_STAGE_SETUP) |
| 358 | { |
| 359 | TU_LOG2(" Set Line Coding\r\n"); |
| 360 | tud_control_xfer(rhport, request, &p_cdc->line_coding, sizeof(cdc_line_coding_t)); |
| 361 | } |
| 362 | else if ( stage == CONTROL_STAGE_ACK) |
| 363 | { |
| 364 | if ( tud_cdc_line_coding_cb ) tud_cdc_line_coding_cb(itf, &p_cdc->line_coding); |
| 365 | } |
| 366 | break; |
| 367 | |
| 368 | case CDC_REQUEST_GET_LINE_CODING: |
| 369 | if (stage == CONTROL_STAGE_SETUP) |
| 370 | { |
| 371 | TU_LOG2(" Get Line Coding\r\n"); |
| 372 | tud_control_xfer(rhport, request, &p_cdc->line_coding, sizeof(cdc_line_coding_t)); |
| 373 | } |
| 374 | break; |
| 375 | |
| 376 | case CDC_REQUEST_SET_CONTROL_LINE_STATE: |
| 377 | if (stage == CONTROL_STAGE_SETUP) |
| 378 | { |
| 379 | tud_control_status(rhport, request); |
| 380 | } |
| 381 | else if (stage == CONTROL_STAGE_ACK) |
| 382 | { |
| 383 | // CDC PSTN v1.2 section 6.3.12 |
| 384 | // Bit 0: Indicates if DTE is present or not. |
| 385 | // This signal corresponds to V.24 signal 108/2 and RS-232 signal DTR (Data Terminal Ready) |
| 386 | // Bit 1: Carrier control for half-duplex modems. |
| 387 | // This signal corresponds to V.24 signal 105 and RS-232 signal RTS (Request to Send) |
| 388 | bool const dtr = tu_bit_test(request->wValue, 0); |
| 389 | bool const rts = tu_bit_test(request->wValue, 1); |
| 390 | |
| 391 | p_cdc->line_state = (uint8_t) request->wValue; |
| 392 | |
| 393 | // Disable fifo overwriting if DTR bit is set |
| 394 | tu_fifo_set_overwritable(&p_cdc->tx_ff, !dtr); |
| 395 | |
| 396 | TU_LOG2(" Set Control Line State: DTR = %d, RTS = %d\r\n", dtr, rts); |
| 397 | |
| 398 | // Invoke callback |
| 399 | if ( tud_cdc_line_state_cb ) tud_cdc_line_state_cb(itf, dtr, rts); |
| 400 | } |
| 401 | break; |
| 402 | case CDC_REQUEST_SEND_BREAK: |
| 403 | if (stage == CONTROL_STAGE_SETUP) |
| 404 | { |
| 405 | tud_control_status(rhport, request); |
| 406 | } |
| 407 | else if (stage == CONTROL_STAGE_ACK) |
| 408 | { |
| 409 | TU_LOG2(" Send Break\r\n"); |
| 410 | if ( tud_cdc_send_break_cb ) tud_cdc_send_break_cb(itf, request->wValue); |
| 411 | } |
| 412 | break; |
| 413 | |
| 414 | default: return false; // stall unsupported request |
| 415 | } |
| 416 | |
| 417 | return true; |
| 418 | } |
| 419 | |
| 420 | bool cdcd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes) |
| 421 | { |
| 422 | (void) result; |
| 423 | |
| 424 | uint8_t itf; |
| 425 | cdcd_interface_t* p_cdc; |
| 426 | |
| 427 | // Identify which interface to use |
| 428 | for (itf = 0; itf < CFG_TUD_CDC; itf++) |
| 429 | { |
| 430 | p_cdc = &_cdcd_itf[itf]; |
| 431 | if ( ( ep_addr == p_cdc->ep_out ) || ( ep_addr == p_cdc->ep_in ) ) break; |
| 432 | } |
| 433 | TU_ASSERT(itf < CFG_TUD_CDC); |
| 434 | |
| 435 | // Received new data |
| 436 | if ( ep_addr == p_cdc->ep_out ) |
| 437 | { |
| 438 | tu_fifo_write_n(&p_cdc->rx_ff, &p_cdc->epout_buf, xferred_bytes); |
| 439 | |
| 440 | // Check for wanted char and invoke callback if needed |
| 441 | if ( tud_cdc_rx_wanted_cb && (((signed char) p_cdc->wanted_char) != -1) ) |
| 442 | { |
| 443 | for ( uint32_t i = 0; i < xferred_bytes; i++ ) |
| 444 | { |
| 445 | if ( (p_cdc->wanted_char == p_cdc->epout_buf[i]) && !tu_fifo_empty(&p_cdc->rx_ff) ) |
| 446 | { |
| 447 | tud_cdc_rx_wanted_cb(itf, p_cdc->wanted_char); |
| 448 | } |
| 449 | } |
| 450 | } |
| 451 | |
| 452 | // invoke receive callback (if there is still data) |
| 453 | if (tud_cdc_rx_cb && !tu_fifo_empty(&p_cdc->rx_ff) ) tud_cdc_rx_cb(itf); |
| 454 | |
| 455 | // prepare for OUT transaction |
| 456 | _prep_out_transaction(p_cdc); |
| 457 | } |
| 458 | |
| 459 | // Data sent to host, we continue to fetch from tx fifo to send. |
| 460 | // Note: This will cause incorrect baudrate set in line coding. |
| 461 | // Though maybe the baudrate is not really important !!! |
| 462 | if ( ep_addr == p_cdc->ep_in ) |
| 463 | { |
| 464 | // invoke transmit callback to possibly refill tx fifo |
| 465 | if ( tud_cdc_tx_complete_cb ) tud_cdc_tx_complete_cb(itf); |
| 466 | |
| 467 | if ( 0 == tud_cdc_n_write_flush(itf) ) |
| 468 | { |
| 469 | // If there is no data left, a ZLP should be sent if |
| 470 | // xferred_bytes is multiple of EP Packet size and not zero |
| 471 | if ( !tu_fifo_count(&p_cdc->tx_ff) && xferred_bytes && (0 == (xferred_bytes & (BULK_PACKET_SIZE-1))) ) |
| 472 | { |
| 473 | if ( usbd_edpt_claim(rhport, p_cdc->ep_in) ) |
| 474 | { |
| 475 | usbd_edpt_xfer(rhport, p_cdc->ep_in, NULL, 0); |
| 476 | } |
| 477 | } |
| 478 | } |
| 479 | } |
| 480 | |
| 481 | // nothing to do with notif endpoint for now |
| 482 | |
| 483 | return true; |
| 484 | } |
| 485 | |
| 486 | #endif |