Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #include "main.h" |
| 11 | |
| 12 | template<typename MatrixType> void matrixVisitor(const MatrixType& p) |
| 13 | { |
| 14 | typedef typename MatrixType::Scalar Scalar; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 15 | |
| 16 | Index rows = p.rows(); |
| 17 | Index cols = p.cols(); |
| 18 | |
| 19 | // construct a random matrix where all coefficients are different |
| 20 | MatrixType m; |
| 21 | m = MatrixType::Random(rows, cols); |
| 22 | for(Index i = 0; i < m.size(); i++) |
| 23 | for(Index i2 = 0; i2 < i; i2++) |
| 24 | while(m(i) == m(i2)) // yes, == |
| 25 | m(i) = internal::random<Scalar>(); |
| 26 | |
| 27 | Scalar minc = Scalar(1000), maxc = Scalar(-1000); |
| 28 | Index minrow=0,mincol=0,maxrow=0,maxcol=0; |
| 29 | for(Index j = 0; j < cols; j++) |
| 30 | for(Index i = 0; i < rows; i++) |
| 31 | { |
| 32 | if(m(i,j) < minc) |
| 33 | { |
| 34 | minc = m(i,j); |
| 35 | minrow = i; |
| 36 | mincol = j; |
| 37 | } |
| 38 | if(m(i,j) > maxc) |
| 39 | { |
| 40 | maxc = m(i,j); |
| 41 | maxrow = i; |
| 42 | maxcol = j; |
| 43 | } |
| 44 | } |
| 45 | Index eigen_minrow, eigen_mincol, eigen_maxrow, eigen_maxcol; |
| 46 | Scalar eigen_minc, eigen_maxc; |
| 47 | eigen_minc = m.minCoeff(&eigen_minrow,&eigen_mincol); |
| 48 | eigen_maxc = m.maxCoeff(&eigen_maxrow,&eigen_maxcol); |
| 49 | VERIFY(minrow == eigen_minrow); |
| 50 | VERIFY(maxrow == eigen_maxrow); |
| 51 | VERIFY(mincol == eigen_mincol); |
| 52 | VERIFY(maxcol == eigen_maxcol); |
| 53 | VERIFY_IS_APPROX(minc, eigen_minc); |
| 54 | VERIFY_IS_APPROX(maxc, eigen_maxc); |
| 55 | VERIFY_IS_APPROX(minc, m.minCoeff()); |
| 56 | VERIFY_IS_APPROX(maxc, m.maxCoeff()); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 57 | |
| 58 | eigen_maxc = (m.adjoint()*m).maxCoeff(&eigen_maxrow,&eigen_maxcol); |
| 59 | eigen_maxc = (m.adjoint()*m).eval().maxCoeff(&maxrow,&maxcol); |
| 60 | VERIFY(maxrow == eigen_maxrow); |
| 61 | VERIFY(maxcol == eigen_maxcol); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 62 | } |
| 63 | |
| 64 | template<typename VectorType> void vectorVisitor(const VectorType& w) |
| 65 | { |
| 66 | typedef typename VectorType::Scalar Scalar; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 67 | |
| 68 | Index size = w.size(); |
| 69 | |
| 70 | // construct a random vector where all coefficients are different |
| 71 | VectorType v; |
| 72 | v = VectorType::Random(size); |
| 73 | for(Index i = 0; i < size; i++) |
| 74 | for(Index i2 = 0; i2 < i; i2++) |
| 75 | while(v(i) == v(i2)) // yes, == |
| 76 | v(i) = internal::random<Scalar>(); |
| 77 | |
| 78 | Scalar minc = v(0), maxc = v(0); |
| 79 | Index minidx=0, maxidx=0; |
| 80 | for(Index i = 0; i < size; i++) |
| 81 | { |
| 82 | if(v(i) < minc) |
| 83 | { |
| 84 | minc = v(i); |
| 85 | minidx = i; |
| 86 | } |
| 87 | if(v(i) > maxc) |
| 88 | { |
| 89 | maxc = v(i); |
| 90 | maxidx = i; |
| 91 | } |
| 92 | } |
| 93 | Index eigen_minidx, eigen_maxidx; |
| 94 | Scalar eigen_minc, eigen_maxc; |
| 95 | eigen_minc = v.minCoeff(&eigen_minidx); |
| 96 | eigen_maxc = v.maxCoeff(&eigen_maxidx); |
| 97 | VERIFY(minidx == eigen_minidx); |
| 98 | VERIFY(maxidx == eigen_maxidx); |
| 99 | VERIFY_IS_APPROX(minc, eigen_minc); |
| 100 | VERIFY_IS_APPROX(maxc, eigen_maxc); |
| 101 | VERIFY_IS_APPROX(minc, v.minCoeff()); |
| 102 | VERIFY_IS_APPROX(maxc, v.maxCoeff()); |
| 103 | |
| 104 | Index idx0 = internal::random<Index>(0,size-1); |
| 105 | Index idx1 = eigen_minidx; |
| 106 | Index idx2 = eigen_maxidx; |
| 107 | VectorType v1(v), v2(v); |
| 108 | v1(idx0) = v1(idx1); |
| 109 | v2(idx0) = v2(idx2); |
| 110 | v1.minCoeff(&eigen_minidx); |
| 111 | v2.maxCoeff(&eigen_maxidx); |
| 112 | VERIFY(eigen_minidx == (std::min)(idx0,idx1)); |
| 113 | VERIFY(eigen_maxidx == (std::min)(idx0,idx2)); |
| 114 | } |
| 115 | |
| 116 | void test_visitor() |
| 117 | { |
| 118 | for(int i = 0; i < g_repeat; i++) { |
| 119 | CALL_SUBTEST_1( matrixVisitor(Matrix<float, 1, 1>()) ); |
| 120 | CALL_SUBTEST_2( matrixVisitor(Matrix2f()) ); |
| 121 | CALL_SUBTEST_3( matrixVisitor(Matrix4d()) ); |
| 122 | CALL_SUBTEST_4( matrixVisitor(MatrixXd(8, 12)) ); |
| 123 | CALL_SUBTEST_5( matrixVisitor(Matrix<double,Dynamic,Dynamic,RowMajor>(20, 20)) ); |
| 124 | CALL_SUBTEST_6( matrixVisitor(MatrixXi(8, 12)) ); |
| 125 | } |
| 126 | for(int i = 0; i < g_repeat; i++) { |
| 127 | CALL_SUBTEST_7( vectorVisitor(Vector4f()) ); |
| 128 | CALL_SUBTEST_7( vectorVisitor(Matrix<int,12,1>()) ); |
| 129 | CALL_SUBTEST_8( vectorVisitor(VectorXd(10)) ); |
| 130 | CALL_SUBTEST_9( vectorVisitor(RowVectorXd(10)) ); |
| 131 | CALL_SUBTEST_10( vectorVisitor(VectorXf(33)) ); |
| 132 | } |
| 133 | } |