blob: 4d5275386f82786c7830eea0d4dbeb4a9d8a92a7 [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
Austin Schuh3de38b02024-06-25 18:25:10 -07002// Copyright 2023 Google Inc. All rights reserved.
Austin Schuh70cc9552019-01-21 19:46:48 -08003// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30
31#include "ceres/visibility_based_preconditioner.h"
32
33#include <memory>
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080034
Austin Schuh70cc9552019-01-21 19:46:48 -080035#include "Eigen/Dense"
36#include "ceres/block_random_access_dense_matrix.h"
37#include "ceres/block_random_access_sparse_matrix.h"
38#include "ceres/block_sparse_matrix.h"
39#include "ceres/casts.h"
40#include "ceres/file.h"
41#include "ceres/internal/eigen.h"
42#include "ceres/linear_least_squares_problems.h"
43#include "ceres/schur_eliminator.h"
44#include "ceres/stringprintf.h"
45#include "ceres/test_util.h"
46#include "ceres/types.h"
47#include "glog/logging.h"
48#include "gtest/gtest.h"
49
Austin Schuh3de38b02024-06-25 18:25:10 -070050namespace ceres::internal {
Austin Schuh70cc9552019-01-21 19:46:48 -080051
52// TODO(sameeragarwal): Re-enable this test once serialization is
53// working again.
54
55// using testing::AssertionResult;
56// using testing::AssertionSuccess;
57// using testing::AssertionFailure;
58
59// static const double kTolerance = 1e-12;
60
61// class VisibilityBasedPreconditionerTest : public ::testing::Test {
62// public:
63// static const int kCameraSize = 9;
64
65// protected:
66// void SetUp() {
67// string input_file = TestFileAbsolutePath("problem-6-1384-000.lsqp");
68
Austin Schuh3de38b02024-06-25 18:25:10 -070069// std::unique_ptr<LinearLeastSquaresProblem> problem =
70// CreateLinearLeastSquaresProblemFromFile(input_file));
Austin Schuh70cc9552019-01-21 19:46:48 -080071// A_.reset(down_cast<BlockSparseMatrix*>(problem->A.release()));
72// b_.reset(problem->b.release());
73// D_.reset(problem->D.release());
74
75// const CompressedRowBlockStructure* bs =
76// CHECK_NOTNULL(A_->block_structure());
77// const int num_col_blocks = bs->cols.size();
78
79// num_cols_ = A_->num_cols();
80// num_rows_ = A_->num_rows();
81// num_eliminate_blocks_ = problem->num_eliminate_blocks;
82// num_camera_blocks_ = num_col_blocks - num_eliminate_blocks_;
83// options_.elimination_groups.push_back(num_eliminate_blocks_);
84// options_.elimination_groups.push_back(
85// A_->block_structure()->cols.size() - num_eliminate_blocks_);
86
87// vector<int> blocks(num_col_blocks - num_eliminate_blocks_, 0);
88// for (int i = num_eliminate_blocks_; i < num_col_blocks; ++i) {
89// blocks[i - num_eliminate_blocks_] = bs->cols[i].size;
90// }
91
92// // The input matrix is a real jacobian and fairly poorly
93// // conditioned. Setting D to a large constant makes the normal
94// // equations better conditioned and makes the tests below better
95// // conditioned.
96// VectorRef(D_.get(), num_cols_).setConstant(10.0);
97
Austin Schuh3de38b02024-06-25 18:25:10 -070098// schur_complement_ =
99// std::make_unique<BlockRandomAccessDenseMatrix>(blocks);
Austin Schuh70cc9552019-01-21 19:46:48 -0800100// Vector rhs(schur_complement_->num_rows());
101
102// std::unique_ptr<SchurEliminatorBase> eliminator;
103// LinearSolver::Options eliminator_options;
104// eliminator_options.elimination_groups = options_.elimination_groups;
105// eliminator_options.num_threads = options_.num_threads;
106
Austin Schuh3de38b02024-06-25 18:25:10 -0700107// eliminator = SchurEliminatorBase::Create(eliminator_options);
Austin Schuh70cc9552019-01-21 19:46:48 -0800108// eliminator->Init(num_eliminate_blocks_, bs);
109// eliminator->Eliminate(A_.get(), b_.get(), D_.get(),
110// schur_complement_.get(), rhs.data());
111// }
112
113// AssertionResult IsSparsityStructureValid() {
114// preconditioner_->InitStorage(*A_->block_structure());
115// const std::unordered_set<pair<int, int>, pair_hash>& cluster_pairs =
116// get_cluster_pairs(); const vector<int>& cluster_membership =
117// get_cluster_membership();
118
119// for (int i = 0; i < num_camera_blocks_; ++i) {
120// for (int j = i; j < num_camera_blocks_; ++j) {
121// if (cluster_pairs.count(make_pair(cluster_membership[i],
122// cluster_membership[j]))) {
123// if (!IsBlockPairInPreconditioner(i, j)) {
124// return AssertionFailure()
125// << "block pair (" << i << "," << j << "missing";
126// }
127// } else {
128// if (IsBlockPairInPreconditioner(i, j)) {
129// return AssertionFailure()
130// << "block pair (" << i << "," << j << "should not be present";
131// }
132// }
133// }
134// }
135// return AssertionSuccess();
136// }
137
138// AssertionResult PreconditionerValuesMatch() {
139// preconditioner_->Update(*A_, D_.get());
140// const std::unordered_set<pair<int, int>, pair_hash>& cluster_pairs =
141// get_cluster_pairs(); const BlockRandomAccessSparseMatrix* m = get_m();
142// Matrix preconditioner_matrix;
143// m->matrix()->ToDenseMatrix(&preconditioner_matrix);
144// ConstMatrixRef full_schur_complement(schur_complement_->values(),
145// m->num_rows(),
146// m->num_rows());
147// const int num_clusters = get_num_clusters();
148// const int kDiagonalBlockSize =
149// kCameraSize * num_camera_blocks_ / num_clusters;
150
151// for (int i = 0; i < num_clusters; ++i) {
152// for (int j = i; j < num_clusters; ++j) {
153// double diff = 0.0;
154// if (cluster_pairs.count(make_pair(i, j))) {
155// diff =
156// (preconditioner_matrix.block(kDiagonalBlockSize * i,
157// kDiagonalBlockSize * j,
158// kDiagonalBlockSize,
159// kDiagonalBlockSize) -
160// full_schur_complement.block(kDiagonalBlockSize * i,
161// kDiagonalBlockSize * j,
162// kDiagonalBlockSize,
163// kDiagonalBlockSize)).norm();
164// } else {
165// diff = preconditioner_matrix.block(kDiagonalBlockSize * i,
166// kDiagonalBlockSize * j,
167// kDiagonalBlockSize,
168// kDiagonalBlockSize).norm();
169// }
170// if (diff > kTolerance) {
171// return AssertionFailure()
172// << "Preconditioner block " << i << " " << j << " differs "
173// << "from expected value by " << diff;
174// }
175// }
176// }
177// return AssertionSuccess();
178// }
179
180// // Accessors
181// int get_num_blocks() { return preconditioner_->num_blocks_; }
182
183// int get_num_clusters() { return preconditioner_->num_clusters_; }
184// int* get_mutable_num_clusters() { return &preconditioner_->num_clusters_; }
185
186// const vector<int>& get_block_size() {
187// return preconditioner_->block_size_; }
188
189// vector<int>* get_mutable_block_size() {
190// return &preconditioner_->block_size_; }
191
192// const vector<int>& get_cluster_membership() {
193// return preconditioner_->cluster_membership_;
194// }
195
196// vector<int>* get_mutable_cluster_membership() {
197// return &preconditioner_->cluster_membership_;
198// }
199
200// const set<pair<int, int>>& get_block_pairs() {
201// return preconditioner_->block_pairs_;
202// }
203
204// set<pair<int, int>>* get_mutable_block_pairs() {
205// return &preconditioner_->block_pairs_;
206// }
207
208// const std::unordered_set<pair<int, int>, pair_hash>& get_cluster_pairs() {
209// return preconditioner_->cluster_pairs_;
210// }
211
212// std::unordered_set<pair<int, int>, pair_hash>* get_mutable_cluster_pairs()
213// {
214// return &preconditioner_->cluster_pairs_;
215// }
216
217// bool IsBlockPairInPreconditioner(const int block1, const int block2) {
218// return preconditioner_->IsBlockPairInPreconditioner(block1, block2);
219// }
220
221// bool IsBlockPairOffDiagonal(const int block1, const int block2) {
222// return preconditioner_->IsBlockPairOffDiagonal(block1, block2);
223// }
224
225// const BlockRandomAccessSparseMatrix* get_m() {
226// return preconditioner_->m_.get();
227// }
228
229// int num_rows_;
230// int num_cols_;
231// int num_eliminate_blocks_;
232// int num_camera_blocks_;
233
234// std::unique_ptr<BlockSparseMatrix> A_;
235// std::unique_ptr<double[]> b_;
236// std::unique_ptr<double[]> D_;
237
238// Preconditioner::Options options_;
239// std::unique_ptr<VisibilityBasedPreconditioner> preconditioner_;
240// std::unique_ptr<BlockRandomAccessDenseMatrix> schur_complement_;
241// };
242
243// TEST_F(VisibilityBasedPreconditionerTest, OneClusterClusterJacobi) {
244// options_.type = CLUSTER_JACOBI;
Austin Schuh3de38b02024-06-25 18:25:10 -0700245// preconditioner_ =
246// std::make_unique<VisibilityBasedPreconditioner>(
247// *A_->block_structure(), options_);
Austin Schuh70cc9552019-01-21 19:46:48 -0800248
249// // Override the clustering to be a single clustering containing all
250// // the cameras.
251// vector<int>& cluster_membership = *get_mutable_cluster_membership();
252// for (int i = 0; i < num_camera_blocks_; ++i) {
253// cluster_membership[i] = 0;
254// }
255
256// *get_mutable_num_clusters() = 1;
257
258// std::unordered_set<pair<int, int>, pair_hash>& cluster_pairs =
259// *get_mutable_cluster_pairs(); cluster_pairs.clear();
260// cluster_pairs.insert(make_pair(0, 0));
261
262// EXPECT_TRUE(IsSparsityStructureValid());
263// EXPECT_TRUE(PreconditionerValuesMatch());
264
265// // Multiplication by the inverse of the preconditioner.
266// const int num_rows = schur_complement_->num_rows();
267// ConstMatrixRef full_schur_complement(schur_complement_->values(),
268// num_rows,
269// num_rows);
270// Vector x(num_rows);
271// Vector y(num_rows);
272// Vector z(num_rows);
273
274// for (int i = 0; i < num_rows; ++i) {
275// x.setZero();
276// y.setZero();
277// z.setZero();
278// x[i] = 1.0;
Austin Schuh3de38b02024-06-25 18:25:10 -0700279// preconditioner_->RightMultiplyAndAccumulate(x.data(), y.data());
Austin Schuh70cc9552019-01-21 19:46:48 -0800280// z = full_schur_complement
281// .selfadjointView<Eigen::Upper>()
282// .llt().solve(x);
283// double max_relative_difference =
284// ((y - z).array() / z.array()).matrix().lpNorm<Eigen::Infinity>();
285// EXPECT_NEAR(max_relative_difference, 0.0, kTolerance);
286// }
287// }
288
289// TEST_F(VisibilityBasedPreconditionerTest, ClusterJacobi) {
290// options_.type = CLUSTER_JACOBI;
Austin Schuh3de38b02024-06-25 18:25:10 -0700291// preconditioner_ =
292// std::make_unique<VisibilityBasedPreconditioner>(*A_->block_structure(),
293// options_);
Austin Schuh70cc9552019-01-21 19:46:48 -0800294
295// // Override the clustering to be equal number of cameras.
296// vector<int>& cluster_membership = *get_mutable_cluster_membership();
297// cluster_membership.resize(num_camera_blocks_);
298// static const int kNumClusters = 3;
299
300// for (int i = 0; i < num_camera_blocks_; ++i) {
301// cluster_membership[i] = (i * kNumClusters) / num_camera_blocks_;
302// }
303// *get_mutable_num_clusters() = kNumClusters;
304
305// std::unordered_set<pair<int, int>, pair_hash>& cluster_pairs =
306// *get_mutable_cluster_pairs(); cluster_pairs.clear(); for (int i = 0; i <
307// kNumClusters; ++i) {
308// cluster_pairs.insert(make_pair(i, i));
309// }
310
311// EXPECT_TRUE(IsSparsityStructureValid());
312// EXPECT_TRUE(PreconditionerValuesMatch());
313// }
314
315// TEST_F(VisibilityBasedPreconditionerTest, ClusterTridiagonal) {
316// options_.type = CLUSTER_TRIDIAGONAL;
Austin Schuh3de38b02024-06-25 18:25:10 -0700317// preconditioner_ =
318// std::make_unique<VisibilityBasedPreconditioner>(*A_->block_structure(),
319// options_);
Austin Schuh70cc9552019-01-21 19:46:48 -0800320// static const int kNumClusters = 3;
321
322// // Override the clustering to be 3 clusters.
323// vector<int>& cluster_membership = *get_mutable_cluster_membership();
324// cluster_membership.resize(num_camera_blocks_);
325// for (int i = 0; i < num_camera_blocks_; ++i) {
326// cluster_membership[i] = (i * kNumClusters) / num_camera_blocks_;
327// }
328// *get_mutable_num_clusters() = kNumClusters;
329
330// // Spanning forest has structure 0-1 2
331// std::unordered_set<pair<int, int>, pair_hash>& cluster_pairs =
332// *get_mutable_cluster_pairs(); cluster_pairs.clear(); for (int i = 0; i <
333// kNumClusters; ++i) {
334// cluster_pairs.insert(make_pair(i, i));
335// }
336// cluster_pairs.insert(make_pair(0, 1));
337
338// EXPECT_TRUE(IsSparsityStructureValid());
339// EXPECT_TRUE(PreconditionerValuesMatch());
340// }
341
Austin Schuh3de38b02024-06-25 18:25:10 -0700342} // namespace ceres::internal