Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 2 | // Copyright 2023 Google Inc. All rights reserved. |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: vitus@google.com (Michael Vitus) |
| 30 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 31 | #include "ceres/parallel_for.h" |
| 32 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 33 | #include <atomic> |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 34 | #include <cmath> |
| 35 | #include <condition_variable> |
| 36 | #include <mutex> |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 37 | #include <numeric> |
| 38 | #include <random> |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 39 | #include <thread> |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 40 | #include <tuple> |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 41 | #include <vector> |
| 42 | |
| 43 | #include "ceres/context_impl.h" |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 44 | #include "ceres/internal/config.h" |
| 45 | #include "ceres/parallel_vector_ops.h" |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 46 | #include "glog/logging.h" |
| 47 | #include "gmock/gmock.h" |
| 48 | #include "gtest/gtest.h" |
| 49 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 50 | namespace ceres::internal { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 51 | |
| 52 | using testing::ElementsAreArray; |
| 53 | using testing::UnorderedElementsAreArray; |
| 54 | |
| 55 | // Tests the parallel for loop computes the correct result for various number of |
| 56 | // threads. |
| 57 | TEST(ParallelFor, NumThreads) { |
| 58 | ContextImpl context; |
| 59 | context.EnsureMinimumThreads(/*num_threads=*/2); |
| 60 | |
| 61 | const int size = 16; |
| 62 | std::vector<int> expected_results(size, 0); |
| 63 | for (int i = 0; i < size; ++i) { |
| 64 | expected_results[i] = std::sqrt(i); |
| 65 | } |
| 66 | |
| 67 | for (int num_threads = 1; num_threads <= 8; ++num_threads) { |
| 68 | std::vector<int> values(size, 0); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 69 | ParallelFor(&context, 0, size, num_threads, [&values](int i) { |
| 70 | values[i] = std::sqrt(i); |
| 71 | }); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 72 | EXPECT_THAT(values, ElementsAreArray(expected_results)); |
| 73 | } |
| 74 | } |
| 75 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 76 | // Tests parallel for loop with ranges |
| 77 | TEST(ParallelForWithRange, NumThreads) { |
| 78 | ContextImpl context; |
| 79 | context.EnsureMinimumThreads(/*num_threads=*/2); |
| 80 | |
| 81 | const int size = 16; |
| 82 | std::vector<int> expected_results(size, 0); |
| 83 | for (int i = 0; i < size; ++i) { |
| 84 | expected_results[i] = std::sqrt(i); |
| 85 | } |
| 86 | |
| 87 | for (int num_threads = 1; num_threads <= 8; ++num_threads) { |
| 88 | std::vector<int> values(size, 0); |
| 89 | ParallelFor( |
| 90 | &context, 0, size, num_threads, [&values](std::tuple<int, int> range) { |
| 91 | auto [start, end] = range; |
| 92 | for (int i = start; i < end; ++i) values[i] = std::sqrt(i); |
| 93 | }); |
| 94 | EXPECT_THAT(values, ElementsAreArray(expected_results)); |
| 95 | } |
| 96 | } |
| 97 | |
| 98 | // Tests parallel for loop with ranges and lower bound on minimal range size |
| 99 | TEST(ParallelForWithRange, MinimalSize) { |
| 100 | ContextImpl context; |
| 101 | constexpr int kNumThreads = 4; |
| 102 | constexpr int kMinBlockSize = 5; |
| 103 | context.EnsureMinimumThreads(kNumThreads); |
| 104 | |
| 105 | for (int size = kMinBlockSize; size <= 25; ++size) { |
| 106 | std::atomic<bool> failed(false); |
| 107 | ParallelFor( |
| 108 | &context, |
| 109 | 0, |
| 110 | size, |
| 111 | kNumThreads, |
| 112 | [&failed, kMinBlockSize](std::tuple<int, int> range) { |
| 113 | auto [start, end] = range; |
| 114 | if (end - start < kMinBlockSize) failed = true; |
| 115 | }, |
| 116 | kMinBlockSize); |
| 117 | EXPECT_EQ(failed, false); |
| 118 | } |
| 119 | } |
| 120 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 121 | // Tests the parallel for loop with the thread ID interface computes the correct |
| 122 | // result for various number of threads. |
| 123 | TEST(ParallelForWithThreadId, NumThreads) { |
| 124 | ContextImpl context; |
| 125 | context.EnsureMinimumThreads(/*num_threads=*/2); |
| 126 | |
| 127 | const int size = 16; |
| 128 | std::vector<int> expected_results(size, 0); |
| 129 | for (int i = 0; i < size; ++i) { |
| 130 | expected_results[i] = std::sqrt(i); |
| 131 | } |
| 132 | |
| 133 | for (int num_threads = 1; num_threads <= 8; ++num_threads) { |
| 134 | std::vector<int> values(size, 0); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 135 | ParallelFor( |
| 136 | &context, 0, size, num_threads, [&values](int thread_id, int i) { |
| 137 | values[i] = std::sqrt(i); |
| 138 | }); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 139 | EXPECT_THAT(values, ElementsAreArray(expected_results)); |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | // Tests nested for loops do not result in a deadlock. |
| 144 | TEST(ParallelFor, NestedParallelForDeadlock) { |
| 145 | ContextImpl context; |
| 146 | context.EnsureMinimumThreads(/*num_threads=*/2); |
| 147 | |
| 148 | // Increment each element in the 2D matrix. |
| 149 | std::vector<std::vector<int>> x(3, {1, 2, 3}); |
| 150 | ParallelFor(&context, 0, 3, 2, [&x, &context](int i) { |
| 151 | std::vector<int>& y = x.at(i); |
| 152 | ParallelFor(&context, 0, 3, 2, [&y](int j) { ++y.at(j); }); |
| 153 | }); |
| 154 | |
| 155 | const std::vector<int> results = {2, 3, 4}; |
| 156 | for (const std::vector<int>& value : x) { |
| 157 | EXPECT_THAT(value, ElementsAreArray(results)); |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | // Tests nested for loops do not result in a deadlock for the parallel for with |
| 162 | // thread ID interface. |
| 163 | TEST(ParallelForWithThreadId, NestedParallelForDeadlock) { |
| 164 | ContextImpl context; |
| 165 | context.EnsureMinimumThreads(/*num_threads=*/2); |
| 166 | |
| 167 | // Increment each element in the 2D matrix. |
| 168 | std::vector<std::vector<int>> x(3, {1, 2, 3}); |
| 169 | ParallelFor(&context, 0, 3, 2, [&x, &context](int thread_id, int i) { |
| 170 | std::vector<int>& y = x.at(i); |
| 171 | ParallelFor(&context, 0, 3, 2, [&y](int thread_id, int j) { ++y.at(j); }); |
| 172 | }); |
| 173 | |
| 174 | const std::vector<int> results = {2, 3, 4}; |
| 175 | for (const std::vector<int>& value : x) { |
| 176 | EXPECT_THAT(value, ElementsAreArray(results)); |
| 177 | } |
| 178 | } |
| 179 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 180 | TEST(ParallelForWithThreadId, UniqueThreadIds) { |
| 181 | // Ensure the hardware supports more than 1 thread to ensure the test will |
| 182 | // pass. |
| 183 | const int num_hardware_threads = std::thread::hardware_concurrency(); |
| 184 | if (num_hardware_threads <= 1) { |
| 185 | LOG(ERROR) |
| 186 | << "Test not supported, the hardware does not support threading."; |
| 187 | return; |
| 188 | } |
| 189 | |
| 190 | ContextImpl context; |
| 191 | context.EnsureMinimumThreads(/*num_threads=*/2); |
| 192 | // Increment each element in the 2D matrix. |
| 193 | std::vector<int> x(2, -1); |
| 194 | std::mutex mutex; |
| 195 | std::condition_variable condition; |
| 196 | int count = 0; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 197 | ParallelFor(&context, |
| 198 | 0, |
| 199 | 2, |
| 200 | 2, |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 201 | [&x, &mutex, &condition, &count](int thread_id, int i) { |
| 202 | std::unique_lock<std::mutex> lock(mutex); |
| 203 | x[i] = thread_id; |
| 204 | ++count; |
| 205 | condition.notify_all(); |
| 206 | condition.wait(lock, [&]() { return count == 2; }); |
| 207 | }); |
| 208 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 209 | EXPECT_THAT(x, UnorderedElementsAreArray({0, 1})); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 210 | } |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 211 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 212 | // Helper function for partition tests |
| 213 | bool BruteForcePartition( |
| 214 | int* costs, int start, int end, int max_partitions, int max_cost); |
| 215 | // Basic test if MaxPartitionCostIsFeasible and BruteForcePartition agree on |
| 216 | // simple test-cases |
| 217 | TEST(GuidedParallelFor, MaxPartitionCostIsFeasible) { |
| 218 | std::vector<int> costs, cumulative_costs, partition; |
| 219 | costs = {1, 2, 3, 5, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0}; |
| 220 | cumulative_costs.resize(costs.size()); |
| 221 | std::partial_sum(costs.begin(), costs.end(), cumulative_costs.begin()); |
| 222 | const auto dummy_getter = [](const int v) { return v; }; |
| 223 | |
| 224 | // [1, 2, 3] [5], [0 ... 0, 7, 0, ... 0] |
| 225 | EXPECT_TRUE(MaxPartitionCostIsFeasible(0, |
| 226 | costs.size(), |
| 227 | 3, |
| 228 | 7, |
| 229 | 0, |
| 230 | cumulative_costs.data(), |
| 231 | dummy_getter, |
| 232 | &partition)); |
| 233 | EXPECT_TRUE(BruteForcePartition(costs.data(), 0, costs.size(), 3, 7)); |
| 234 | // [1, 2, 3, 5, 0 ... 0, 7, 0, ... 0] |
| 235 | EXPECT_TRUE(MaxPartitionCostIsFeasible(0, |
| 236 | costs.size(), |
| 237 | 3, |
| 238 | 18, |
| 239 | 0, |
| 240 | cumulative_costs.data(), |
| 241 | dummy_getter, |
| 242 | &partition)); |
| 243 | EXPECT_TRUE(BruteForcePartition(costs.data(), 0, costs.size(), 3, 18)); |
| 244 | // Impossible since there is item of cost 7 |
| 245 | EXPECT_FALSE(MaxPartitionCostIsFeasible(0, |
| 246 | costs.size(), |
| 247 | 3, |
| 248 | 6, |
| 249 | 0, |
| 250 | cumulative_costs.data(), |
| 251 | dummy_getter, |
| 252 | &partition)); |
| 253 | EXPECT_FALSE(BruteForcePartition(costs.data(), 0, costs.size(), 3, 6)); |
| 254 | // Impossible |
| 255 | EXPECT_FALSE(MaxPartitionCostIsFeasible(0, |
| 256 | costs.size(), |
| 257 | 2, |
| 258 | 10, |
| 259 | 0, |
| 260 | cumulative_costs.data(), |
| 261 | dummy_getter, |
| 262 | &partition)); |
| 263 | EXPECT_FALSE(BruteForcePartition(costs.data(), 0, costs.size(), 2, 10)); |
| 264 | } |
| 265 | |
| 266 | // Randomized tests for MaxPartitionCostIsFeasible |
| 267 | TEST(GuidedParallelFor, MaxPartitionCostIsFeasibleRandomized) { |
| 268 | std::vector<int> costs, cumulative_costs, partition; |
| 269 | const auto dummy_getter = [](const int v) { return v; }; |
| 270 | |
| 271 | // Random tests |
| 272 | const int kNumTests = 1000; |
| 273 | const int kMaxElements = 32; |
| 274 | const int kMaxPartitions = 16; |
| 275 | const int kMaxElCost = 8; |
| 276 | std::mt19937 rng; |
| 277 | std::uniform_int_distribution<int> rng_N(1, kMaxElements); |
| 278 | std::uniform_int_distribution<int> rng_M(1, kMaxPartitions); |
| 279 | std::uniform_int_distribution<int> rng_e(0, kMaxElCost); |
| 280 | for (int t = 0; t < kNumTests; ++t) { |
| 281 | const int N = rng_N(rng); |
| 282 | const int M = rng_M(rng); |
| 283 | int total = 0; |
| 284 | costs.clear(); |
| 285 | for (int i = 0; i < N; ++i) { |
| 286 | costs.push_back(rng_e(rng)); |
| 287 | total += costs.back(); |
| 288 | } |
| 289 | |
| 290 | cumulative_costs.resize(N); |
| 291 | std::partial_sum(costs.begin(), costs.end(), cumulative_costs.begin()); |
| 292 | |
| 293 | std::uniform_int_distribution<int> rng_seg(0, N - 1); |
| 294 | int start = rng_seg(rng); |
| 295 | int end = rng_seg(rng); |
| 296 | if (start > end) std::swap(start, end); |
| 297 | ++end; |
| 298 | |
| 299 | int first_admissible = 0; |
| 300 | for (int threshold = 1; threshold <= total; ++threshold) { |
| 301 | const bool bruteforce = |
| 302 | BruteForcePartition(costs.data(), start, end, M, threshold); |
| 303 | if (bruteforce && !first_admissible) { |
| 304 | first_admissible = threshold; |
| 305 | } |
| 306 | const bool binary_search = |
| 307 | MaxPartitionCostIsFeasible(start, |
| 308 | end, |
| 309 | M, |
| 310 | threshold, |
| 311 | start ? cumulative_costs[start - 1] : 0, |
| 312 | cumulative_costs.data(), |
| 313 | dummy_getter, |
| 314 | &partition); |
| 315 | EXPECT_EQ(bruteforce, binary_search); |
| 316 | EXPECT_LE(partition.size(), M + 1); |
| 317 | // check partition itself |
| 318 | if (binary_search) { |
| 319 | ASSERT_GT(partition.size(), 1); |
| 320 | EXPECT_EQ(partition.front(), start); |
| 321 | EXPECT_EQ(partition.back(), end); |
| 322 | |
| 323 | const int num_partitions = partition.size() - 1; |
| 324 | EXPECT_LE(num_partitions, M); |
| 325 | for (int j = 0; j < num_partitions; ++j) { |
| 326 | int total = 0; |
| 327 | for (int k = partition[j]; k < partition[j + 1]; ++k) { |
| 328 | EXPECT_LT(k, end); |
| 329 | EXPECT_GE(k, start); |
| 330 | total += costs[k]; |
| 331 | } |
| 332 | EXPECT_LE(total, threshold); |
| 333 | } |
| 334 | } |
| 335 | } |
| 336 | } |
| 337 | } |
| 338 | |
| 339 | TEST(GuidedParallelFor, PartitionRangeForParallelFor) { |
| 340 | std::vector<int> costs, cumulative_costs, partition; |
| 341 | const auto dummy_getter = [](const int v) { return v; }; |
| 342 | |
| 343 | // Random tests |
| 344 | const int kNumTests = 1000; |
| 345 | const int kMaxElements = 32; |
| 346 | const int kMaxPartitions = 16; |
| 347 | const int kMaxElCost = 8; |
| 348 | std::mt19937 rng; |
| 349 | std::uniform_int_distribution<int> rng_N(1, kMaxElements); |
| 350 | std::uniform_int_distribution<int> rng_M(1, kMaxPartitions); |
| 351 | std::uniform_int_distribution<int> rng_e(0, kMaxElCost); |
| 352 | for (int t = 0; t < kNumTests; ++t) { |
| 353 | const int N = rng_N(rng); |
| 354 | const int M = rng_M(rng); |
| 355 | int total = 0; |
| 356 | costs.clear(); |
| 357 | for (int i = 0; i < N; ++i) { |
| 358 | costs.push_back(rng_e(rng)); |
| 359 | total += costs.back(); |
| 360 | } |
| 361 | |
| 362 | cumulative_costs.resize(N); |
| 363 | std::partial_sum(costs.begin(), costs.end(), cumulative_costs.begin()); |
| 364 | |
| 365 | std::uniform_int_distribution<int> rng_seg(0, N - 1); |
| 366 | int start = rng_seg(rng); |
| 367 | int end = rng_seg(rng); |
| 368 | if (start > end) std::swap(start, end); |
| 369 | ++end; |
| 370 | |
| 371 | int first_admissible = 0; |
| 372 | for (int threshold = 1; threshold <= total; ++threshold) { |
| 373 | const bool bruteforce = |
| 374 | BruteForcePartition(costs.data(), start, end, M, threshold); |
| 375 | if (bruteforce) { |
| 376 | first_admissible = threshold; |
| 377 | break; |
| 378 | } |
| 379 | } |
| 380 | EXPECT_TRUE(first_admissible != 0 || total == 0); |
| 381 | partition = PartitionRangeForParallelFor( |
| 382 | start, end, M, cumulative_costs.data(), dummy_getter); |
| 383 | ASSERT_GT(partition.size(), 1); |
| 384 | EXPECT_EQ(partition.front(), start); |
| 385 | EXPECT_EQ(partition.back(), end); |
| 386 | |
| 387 | const int num_partitions = partition.size() - 1; |
| 388 | EXPECT_LE(num_partitions, M); |
| 389 | for (int j = 0; j < num_partitions; ++j) { |
| 390 | int total = 0; |
| 391 | for (int k = partition[j]; k < partition[j + 1]; ++k) { |
| 392 | EXPECT_LT(k, end); |
| 393 | EXPECT_GE(k, start); |
| 394 | total += costs[k]; |
| 395 | } |
| 396 | EXPECT_LE(total, first_admissible); |
| 397 | } |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | // Recursively try to partition range into segements of total cost |
| 402 | // less than max_cost |
| 403 | bool BruteForcePartition( |
| 404 | int* costs, int start, int end, int max_partitions, int max_cost) { |
| 405 | if (start == end) return true; |
| 406 | if (start < end && max_partitions == 0) return false; |
| 407 | int total_cost = 0; |
| 408 | for (int last_curr = start + 1; last_curr <= end; ++last_curr) { |
| 409 | total_cost += costs[last_curr - 1]; |
| 410 | if (total_cost > max_cost) break; |
| 411 | if (BruteForcePartition( |
| 412 | costs, last_curr, end, max_partitions - 1, max_cost)) |
| 413 | return true; |
| 414 | } |
| 415 | return false; |
| 416 | } |
| 417 | |
| 418 | // Tests if guided parallel for loop computes the correct result for various |
| 419 | // number of threads. |
| 420 | TEST(GuidedParallelFor, NumThreads) { |
| 421 | ContextImpl context; |
| 422 | context.EnsureMinimumThreads(/*num_threads=*/2); |
| 423 | |
| 424 | const int size = 16; |
| 425 | std::vector<int> expected_results(size, 0); |
| 426 | for (int i = 0; i < size; ++i) { |
| 427 | expected_results[i] = std::sqrt(i); |
| 428 | } |
| 429 | |
| 430 | std::vector<int> costs, cumulative_costs; |
| 431 | for (int i = 1; i <= size; ++i) { |
| 432 | int cost = i * i; |
| 433 | costs.push_back(cost); |
| 434 | if (i == 1) { |
| 435 | cumulative_costs.push_back(cost); |
| 436 | } else { |
| 437 | cumulative_costs.push_back(cost + cumulative_costs.back()); |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | for (int num_threads = 1; num_threads <= 8; ++num_threads) { |
| 442 | std::vector<int> values(size, 0); |
| 443 | ParallelFor( |
| 444 | &context, |
| 445 | 0, |
| 446 | size, |
| 447 | num_threads, |
| 448 | [&values](int i) { values[i] = std::sqrt(i); }, |
| 449 | cumulative_costs.data(), |
| 450 | [](const int v) { return v; }); |
| 451 | EXPECT_THAT(values, ElementsAreArray(expected_results)); |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | TEST(ParallelAssign, D2MulX) { |
| 456 | const int kVectorSize = 1024 * 1024; |
| 457 | const int kMaxNumThreads = 8; |
| 458 | const double kEpsilon = 1e-16; |
| 459 | |
| 460 | const Vector D_full = Vector::Random(kVectorSize * 2); |
| 461 | const ConstVectorRef D(D_full.data() + kVectorSize, kVectorSize); |
| 462 | const Vector x = Vector::Random(kVectorSize); |
| 463 | const Vector y_expected = D.array().square() * x.array(); |
| 464 | ContextImpl context; |
| 465 | context.EnsureMinimumThreads(kMaxNumThreads); |
| 466 | |
| 467 | for (int num_threads = 1; num_threads <= kMaxNumThreads; ++num_threads) { |
| 468 | Vector y_observed(kVectorSize); |
| 469 | ParallelAssign( |
| 470 | &context, num_threads, y_observed, D.array().square() * x.array()); |
| 471 | |
| 472 | // We might get non-bit-exact result due to different precision in scalar |
| 473 | // and vector code. For example, in x86 mode mingw might emit x87 |
| 474 | // instructions for scalar code, thus making bit-exact check fail |
| 475 | EXPECT_NEAR((y_expected - y_observed).squaredNorm(), |
| 476 | 0., |
| 477 | kEpsilon * y_expected.squaredNorm()); |
| 478 | } |
| 479 | } |
| 480 | |
| 481 | TEST(ParallelAssign, SetZero) { |
| 482 | const int kVectorSize = 1024 * 1024; |
| 483 | const int kMaxNumThreads = 8; |
| 484 | |
| 485 | ContextImpl context; |
| 486 | context.EnsureMinimumThreads(kMaxNumThreads); |
| 487 | |
| 488 | for (int num_threads = 1; num_threads <= kMaxNumThreads; ++num_threads) { |
| 489 | Vector x = Vector::Random(kVectorSize); |
| 490 | ParallelSetZero(&context, num_threads, x); |
| 491 | |
| 492 | CHECK_EQ(x.squaredNorm(), 0.); |
| 493 | } |
| 494 | } |
| 495 | |
| 496 | } // namespace ceres::internal |