Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 2 | // Copyright 2023 Google Inc. All rights reserved. |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: keir@google.com (Keir Mierle) |
| 30 | // |
| 31 | // Tests shared across evaluators. The tests try all combinations of linear |
| 32 | // solver and num_eliminate_blocks (for schur-based solvers). |
| 33 | |
| 34 | #include "ceres/evaluator.h" |
| 35 | |
| 36 | #include <memory> |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 37 | #include <string> |
| 38 | #include <vector> |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 39 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 40 | #include "ceres/casts.h" |
| 41 | #include "ceres/cost_function.h" |
| 42 | #include "ceres/crs_matrix.h" |
| 43 | #include "ceres/evaluator_test_utils.h" |
| 44 | #include "ceres/internal/eigen.h" |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 45 | #include "ceres/manifold.h" |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 46 | #include "ceres/problem_impl.h" |
| 47 | #include "ceres/program.h" |
| 48 | #include "ceres/sized_cost_function.h" |
| 49 | #include "ceres/sparse_matrix.h" |
| 50 | #include "ceres/stringprintf.h" |
| 51 | #include "ceres/types.h" |
| 52 | #include "gtest/gtest.h" |
| 53 | |
| 54 | namespace ceres { |
| 55 | namespace internal { |
| 56 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 57 | // TODO(keir): Consider pushing this into a common test utils file. |
| 58 | template <int kFactor, int kNumResiduals, int... Ns> |
| 59 | class ParameterIgnoringCostFunction |
| 60 | : public SizedCostFunction<kNumResiduals, Ns...> { |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 61 | using Base = SizedCostFunction<kNumResiduals, Ns...>; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 62 | |
| 63 | public: |
| 64 | explicit ParameterIgnoringCostFunction(bool succeeds = true) |
| 65 | : succeeds_(succeeds) {} |
| 66 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 67 | bool Evaluate(double const* const* parameters, |
| 68 | double* residuals, |
| 69 | double** jacobians) const final { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 70 | for (int i = 0; i < Base::num_residuals(); ++i) { |
| 71 | residuals[i] = i + 1; |
| 72 | } |
| 73 | if (jacobians) { |
| 74 | for (int k = 0; k < Base::parameter_block_sizes().size(); ++k) { |
| 75 | // The jacobians here are full sized, but they are transformed in the |
| 76 | // evaluator into the "local" jacobian. In the tests, the "subset |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 77 | // constant" manifold is used, which should pick out columns from these |
| 78 | // jacobians. Put values in the jacobian that make this obvious; in |
| 79 | // particular, make the jacobians like this: |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 80 | // |
| 81 | // 1 2 3 4 ... |
| 82 | // 1 2 3 4 ... .* kFactor |
| 83 | // 1 2 3 4 ... |
| 84 | // |
| 85 | // where the multiplication by kFactor makes it easier to distinguish |
| 86 | // between Jacobians of different residuals for the same parameter. |
| 87 | if (jacobians[k] != nullptr) { |
| 88 | MatrixRef jacobian(jacobians[k], |
| 89 | Base::num_residuals(), |
| 90 | Base::parameter_block_sizes()[k]); |
| 91 | for (int j = 0; j < Base::parameter_block_sizes()[k]; ++j) { |
| 92 | jacobian.col(j).setConstant(kFactor * (j + 1)); |
| 93 | } |
| 94 | } |
| 95 | } |
| 96 | } |
| 97 | return succeeds_; |
| 98 | } |
| 99 | |
| 100 | private: |
| 101 | bool succeeds_; |
| 102 | }; |
| 103 | |
| 104 | struct EvaluatorTestOptions { |
| 105 | EvaluatorTestOptions(LinearSolverType linear_solver_type, |
| 106 | int num_eliminate_blocks, |
| 107 | bool dynamic_sparsity = false) |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 108 | : linear_solver_type(linear_solver_type), |
| 109 | num_eliminate_blocks(num_eliminate_blocks), |
| 110 | dynamic_sparsity(dynamic_sparsity) {} |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 111 | |
| 112 | LinearSolverType linear_solver_type; |
| 113 | int num_eliminate_blocks; |
| 114 | bool dynamic_sparsity; |
| 115 | }; |
| 116 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 117 | struct EvaluatorTest : public ::testing::TestWithParam<EvaluatorTestOptions> { |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 118 | std::unique_ptr<Evaluator> CreateEvaluator(Program* program) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 119 | // This program is straight from the ProblemImpl, and so has no index/offset |
| 120 | // yet; compute it here as required by the evaluator implementations. |
| 121 | program->SetParameterOffsetsAndIndex(); |
| 122 | |
| 123 | if (VLOG_IS_ON(1)) { |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 124 | std::string report; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 125 | StringAppendF(&report, |
| 126 | "Creating evaluator with type: %d", |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 127 | GetParam().linear_solver_type); |
| 128 | if (GetParam().linear_solver_type == SPARSE_NORMAL_CHOLESKY) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 129 | StringAppendF( |
| 130 | &report, ", dynamic_sparsity: %d", GetParam().dynamic_sparsity); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 131 | } |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 132 | StringAppendF(&report, |
| 133 | " and num_eliminate_blocks: %d", |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 134 | GetParam().num_eliminate_blocks); |
| 135 | VLOG(1) << report; |
| 136 | } |
| 137 | Evaluator::Options options; |
| 138 | options.linear_solver_type = GetParam().linear_solver_type; |
| 139 | options.num_eliminate_blocks = GetParam().num_eliminate_blocks; |
| 140 | options.dynamic_sparsity = GetParam().dynamic_sparsity; |
| 141 | options.context = problem.context(); |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 142 | std::string error; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 143 | return Evaluator::Create(options, program, &error); |
| 144 | } |
| 145 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 146 | void EvaluateAndCompare(ProblemImpl* problem, |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 147 | int expected_num_rows, |
| 148 | int expected_num_cols, |
| 149 | double expected_cost, |
| 150 | const double* expected_residuals, |
| 151 | const double* expected_gradient, |
| 152 | const double* expected_jacobian) { |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 153 | std::unique_ptr<Evaluator> evaluator = |
| 154 | CreateEvaluator(problem->mutable_program()); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 155 | int num_residuals = expected_num_rows; |
| 156 | int num_parameters = expected_num_cols; |
| 157 | |
| 158 | double cost = -1; |
| 159 | |
| 160 | Vector residuals(num_residuals); |
| 161 | residuals.setConstant(-2000); |
| 162 | |
| 163 | Vector gradient(num_parameters); |
| 164 | gradient.setConstant(-3000); |
| 165 | |
| 166 | std::unique_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); |
| 167 | |
| 168 | ASSERT_EQ(expected_num_rows, evaluator->NumResiduals()); |
| 169 | ASSERT_EQ(expected_num_cols, evaluator->NumEffectiveParameters()); |
| 170 | ASSERT_EQ(expected_num_rows, jacobian->num_rows()); |
| 171 | ASSERT_EQ(expected_num_cols, jacobian->num_cols()); |
| 172 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 173 | std::vector<double> state(evaluator->NumParameters()); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 174 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 175 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 176 | ASSERT_TRUE(evaluator->Evaluate( |
| 177 | &state[0], |
| 178 | &cost, |
| 179 | expected_residuals != nullptr ? &residuals[0] : nullptr, |
| 180 | expected_gradient != nullptr ? &gradient[0] : nullptr, |
| 181 | expected_jacobian != nullptr ? jacobian.get() : nullptr)); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 182 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 183 | |
| 184 | Matrix actual_jacobian; |
| 185 | if (expected_jacobian != nullptr) { |
| 186 | jacobian->ToDenseMatrix(&actual_jacobian); |
| 187 | } |
| 188 | |
| 189 | CompareEvaluations(expected_num_rows, |
| 190 | expected_num_cols, |
| 191 | expected_cost, |
| 192 | expected_residuals, |
| 193 | expected_gradient, |
| 194 | expected_jacobian, |
| 195 | cost, |
| 196 | &residuals[0], |
| 197 | &gradient[0], |
| 198 | actual_jacobian.data()); |
| 199 | } |
| 200 | |
| 201 | // Try all combinations of parameters for the evaluator. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 202 | void CheckAllEvaluationCombinations(const ExpectedEvaluation& expected) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 203 | for (int i = 0; i < 8; ++i) { |
| 204 | EvaluateAndCompare(&problem, |
| 205 | expected.num_rows, |
| 206 | expected.num_cols, |
| 207 | expected.cost, |
| 208 | (i & 1) ? expected.residuals : nullptr, |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 209 | (i & 2) ? expected.gradient : nullptr, |
| 210 | (i & 4) ? expected.jacobian : nullptr); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 211 | } |
| 212 | } |
| 213 | |
| 214 | // The values are ignored completely by the cost function. |
| 215 | double x[2]; |
| 216 | double y[3]; |
| 217 | double z[4]; |
| 218 | |
| 219 | ProblemImpl problem; |
| 220 | }; |
| 221 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 222 | static void SetSparseMatrixConstant(SparseMatrix* sparse_matrix, double value) { |
| 223 | VectorRef(sparse_matrix->mutable_values(), sparse_matrix->num_nonzeros()) |
| 224 | .setConstant(value); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 225 | } |
| 226 | |
| 227 | TEST_P(EvaluatorTest, SingleResidualProblem) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 228 | problem.AddResidualBlock( |
| 229 | new ParameterIgnoringCostFunction<1, 3, 2, 3, 4>, nullptr, x, y, z); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 230 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 231 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 232 | ExpectedEvaluation expected = { |
| 233 | // Rows/columns |
| 234 | 3, 9, |
| 235 | // Cost |
| 236 | 7.0, |
| 237 | // Residuals |
| 238 | { 1.0, 2.0, 3.0 }, |
| 239 | // Gradient |
| 240 | { 6.0, 12.0, // x |
| 241 | 6.0, 12.0, 18.0, // y |
| 242 | 6.0, 12.0, 18.0, 24.0, // z |
| 243 | }, |
| 244 | // Jacobian |
| 245 | // x y z |
| 246 | { 1, 2, 1, 2, 3, 1, 2, 3, 4, |
| 247 | 1, 2, 1, 2, 3, 1, 2, 3, 4, |
| 248 | 1, 2, 1, 2, 3, 1, 2, 3, 4 |
| 249 | } |
| 250 | }; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 251 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 252 | CheckAllEvaluationCombinations(expected); |
| 253 | } |
| 254 | |
| 255 | TEST_P(EvaluatorTest, SingleResidualProblemWithPermutedParameters) { |
| 256 | // Add the parameters in explicit order to force the ordering in the program. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 257 | problem.AddParameterBlock(x, 2); |
| 258 | problem.AddParameterBlock(y, 3); |
| 259 | problem.AddParameterBlock(z, 4); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 260 | |
| 261 | // Then use a cost function which is similar to the others, but swap around |
| 262 | // the ordering of the parameters to the cost function. This shouldn't affect |
| 263 | // the jacobian evaluation, but requires explicit handling in the evaluators. |
| 264 | // At one point the compressed row evaluator had a bug that went undetected |
| 265 | // for a long time, since by chance most users added parameters to the problem |
| 266 | // in the same order that they occurred as parameters to a cost function. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 267 | problem.AddResidualBlock( |
| 268 | new ParameterIgnoringCostFunction<1, 3, 4, 3, 2>, nullptr, z, y, x); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 269 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 270 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 271 | ExpectedEvaluation expected = { |
| 272 | // Rows/columns |
| 273 | 3, 9, |
| 274 | // Cost |
| 275 | 7.0, |
| 276 | // Residuals |
| 277 | { 1.0, 2.0, 3.0 }, |
| 278 | // Gradient |
| 279 | { 6.0, 12.0, // x |
| 280 | 6.0, 12.0, 18.0, // y |
| 281 | 6.0, 12.0, 18.0, 24.0, // z |
| 282 | }, |
| 283 | // Jacobian |
| 284 | // x y z |
| 285 | { 1, 2, 1, 2, 3, 1, 2, 3, 4, |
| 286 | 1, 2, 1, 2, 3, 1, 2, 3, 4, |
| 287 | 1, 2, 1, 2, 3, 1, 2, 3, 4 |
| 288 | } |
| 289 | }; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 290 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 291 | CheckAllEvaluationCombinations(expected); |
| 292 | } |
| 293 | |
| 294 | TEST_P(EvaluatorTest, SingleResidualProblemWithNuisanceParameters) { |
| 295 | // These parameters are not used. |
| 296 | double a[2]; |
| 297 | double b[1]; |
| 298 | double c[1]; |
| 299 | double d[3]; |
| 300 | |
| 301 | // Add the parameters in a mixed order so the Jacobian is "checkered" with the |
| 302 | // values from the other parameters. |
| 303 | problem.AddParameterBlock(a, 2); |
| 304 | problem.AddParameterBlock(x, 2); |
| 305 | problem.AddParameterBlock(b, 1); |
| 306 | problem.AddParameterBlock(y, 3); |
| 307 | problem.AddParameterBlock(c, 1); |
| 308 | problem.AddParameterBlock(z, 4); |
| 309 | problem.AddParameterBlock(d, 3); |
| 310 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 311 | problem.AddResidualBlock( |
| 312 | new ParameterIgnoringCostFunction<1, 3, 2, 3, 4>, nullptr, x, y, z); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 313 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 314 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 315 | ExpectedEvaluation expected = { |
| 316 | // Rows/columns |
| 317 | 3, 16, |
| 318 | // Cost |
| 319 | 7.0, |
| 320 | // Residuals |
| 321 | { 1.0, 2.0, 3.0 }, |
| 322 | // Gradient |
| 323 | { 0.0, 0.0, // a |
| 324 | 6.0, 12.0, // x |
| 325 | 0.0, // b |
| 326 | 6.0, 12.0, 18.0, // y |
| 327 | 0.0, // c |
| 328 | 6.0, 12.0, 18.0, 24.0, // z |
| 329 | 0.0, 0.0, 0.0, // d |
| 330 | }, |
| 331 | // Jacobian |
| 332 | // a x b y c z d |
| 333 | { 0, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 0, 0, |
| 334 | 0, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 0, 0, |
| 335 | 0, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 0, 0 |
| 336 | } |
| 337 | }; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 338 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 339 | CheckAllEvaluationCombinations(expected); |
| 340 | } |
| 341 | |
| 342 | TEST_P(EvaluatorTest, MultipleResidualProblem) { |
| 343 | // Add the parameters in explicit order to force the ordering in the program. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 344 | problem.AddParameterBlock(x, 2); |
| 345 | problem.AddParameterBlock(y, 3); |
| 346 | problem.AddParameterBlock(z, 4); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 347 | |
| 348 | // f(x, y) in R^2 |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 349 | problem.AddResidualBlock( |
| 350 | new ParameterIgnoringCostFunction<1, 2, 2, 3>, nullptr, x, y); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 351 | |
| 352 | // g(x, z) in R^3 |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 353 | problem.AddResidualBlock( |
| 354 | new ParameterIgnoringCostFunction<2, 3, 2, 4>, nullptr, x, z); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 355 | |
| 356 | // h(y, z) in R^4 |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 357 | problem.AddResidualBlock( |
| 358 | new ParameterIgnoringCostFunction<3, 4, 3, 4>, nullptr, y, z); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 359 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 360 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 361 | ExpectedEvaluation expected = { |
| 362 | // Rows/columns |
| 363 | 9, 9, |
| 364 | // Cost |
| 365 | // f g h |
| 366 | ( 1 + 4 + 1 + 4 + 9 + 1 + 4 + 9 + 16) / 2.0, |
| 367 | // Residuals |
| 368 | { 1.0, 2.0, // f |
| 369 | 1.0, 2.0, 3.0, // g |
| 370 | 1.0, 2.0, 3.0, 4.0 // h |
| 371 | }, |
| 372 | // Gradient |
| 373 | { 15.0, 30.0, // x |
| 374 | 33.0, 66.0, 99.0, // y |
| 375 | 42.0, 84.0, 126.0, 168.0 // z |
| 376 | }, |
| 377 | // Jacobian |
| 378 | // x y z |
| 379 | { /* f(x, y) */ 1, 2, 1, 2, 3, 0, 0, 0, 0, |
| 380 | 1, 2, 1, 2, 3, 0, 0, 0, 0, |
| 381 | |
| 382 | /* g(x, z) */ 2, 4, 0, 0, 0, 2, 4, 6, 8, |
| 383 | 2, 4, 0, 0, 0, 2, 4, 6, 8, |
| 384 | 2, 4, 0, 0, 0, 2, 4, 6, 8, |
| 385 | |
| 386 | /* h(y, z) */ 0, 0, 3, 6, 9, 3, 6, 9, 12, |
| 387 | 0, 0, 3, 6, 9, 3, 6, 9, 12, |
| 388 | 0, 0, 3, 6, 9, 3, 6, 9, 12, |
| 389 | 0, 0, 3, 6, 9, 3, 6, 9, 12 |
| 390 | } |
| 391 | }; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 392 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 393 | CheckAllEvaluationCombinations(expected); |
| 394 | } |
| 395 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 396 | TEST_P(EvaluatorTest, MultipleResidualsWithManifolds) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 397 | // Add the parameters in explicit order to force the ordering in the program. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 398 | problem.AddParameterBlock(x, 2); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 399 | |
| 400 | // Fix y's first dimension. |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 401 | std::vector<int> y_fixed; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 402 | y_fixed.push_back(0); |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 403 | problem.AddParameterBlock(y, 3, new SubsetManifold(3, y_fixed)); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 404 | |
| 405 | // Fix z's second dimension. |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 406 | std::vector<int> z_fixed; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 407 | z_fixed.push_back(1); |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 408 | problem.AddParameterBlock(z, 4, new SubsetManifold(4, z_fixed)); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 409 | |
| 410 | // f(x, y) in R^2 |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 411 | problem.AddResidualBlock( |
| 412 | new ParameterIgnoringCostFunction<1, 2, 2, 3>, nullptr, x, y); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 413 | |
| 414 | // g(x, z) in R^3 |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 415 | problem.AddResidualBlock( |
| 416 | new ParameterIgnoringCostFunction<2, 3, 2, 4>, nullptr, x, z); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 417 | |
| 418 | // h(y, z) in R^4 |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 419 | problem.AddResidualBlock( |
| 420 | new ParameterIgnoringCostFunction<3, 4, 3, 4>, nullptr, y, z); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 421 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 422 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 423 | ExpectedEvaluation expected = { |
| 424 | // Rows/columns |
| 425 | 9, 7, |
| 426 | // Cost |
| 427 | // f g h |
| 428 | ( 1 + 4 + 1 + 4 + 9 + 1 + 4 + 9 + 16) / 2.0, |
| 429 | // Residuals |
| 430 | { 1.0, 2.0, // f |
| 431 | 1.0, 2.0, 3.0, // g |
| 432 | 1.0, 2.0, 3.0, 4.0 // h |
| 433 | }, |
| 434 | // Gradient |
| 435 | { 15.0, 30.0, // x |
| 436 | 66.0, 99.0, // y |
| 437 | 42.0, 126.0, 168.0 // z |
| 438 | }, |
| 439 | // Jacobian |
| 440 | // x y z |
| 441 | { /* f(x, y) */ 1, 2, 2, 3, 0, 0, 0, |
| 442 | 1, 2, 2, 3, 0, 0, 0, |
| 443 | |
| 444 | /* g(x, z) */ 2, 4, 0, 0, 2, 6, 8, |
| 445 | 2, 4, 0, 0, 2, 6, 8, |
| 446 | 2, 4, 0, 0, 2, 6, 8, |
| 447 | |
| 448 | /* h(y, z) */ 0, 0, 6, 9, 3, 9, 12, |
| 449 | 0, 0, 6, 9, 3, 9, 12, |
| 450 | 0, 0, 6, 9, 3, 9, 12, |
| 451 | 0, 0, 6, 9, 3, 9, 12 |
| 452 | } |
| 453 | }; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 454 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 455 | CheckAllEvaluationCombinations(expected); |
| 456 | } |
| 457 | |
| 458 | TEST_P(EvaluatorTest, MultipleResidualProblemWithSomeConstantParameters) { |
| 459 | // The values are ignored completely by the cost function. |
| 460 | double x[2]; |
| 461 | double y[3]; |
| 462 | double z[4]; |
| 463 | |
| 464 | // Add the parameters in explicit order to force the ordering in the program. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 465 | problem.AddParameterBlock(x, 2); |
| 466 | problem.AddParameterBlock(y, 3); |
| 467 | problem.AddParameterBlock(z, 4); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 468 | |
| 469 | // f(x, y) in R^2 |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 470 | problem.AddResidualBlock( |
| 471 | new ParameterIgnoringCostFunction<1, 2, 2, 3>, nullptr, x, y); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 472 | |
| 473 | // g(x, z) in R^3 |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 474 | problem.AddResidualBlock( |
| 475 | new ParameterIgnoringCostFunction<2, 3, 2, 4>, nullptr, x, z); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 476 | |
| 477 | // h(y, z) in R^4 |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 478 | problem.AddResidualBlock( |
| 479 | new ParameterIgnoringCostFunction<3, 4, 3, 4>, nullptr, y, z); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 480 | |
| 481 | // For this test, "z" is constant. |
| 482 | problem.SetParameterBlockConstant(z); |
| 483 | |
| 484 | // Create the reduced program which is missing the fixed "z" variable. |
| 485 | // Normally, the preprocessing of the program that happens in solver_impl |
| 486 | // takes care of this, but we don't want to invoke the solver here. |
| 487 | Program reduced_program; |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 488 | std::vector<ParameterBlock*>* parameter_blocks = |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 489 | problem.mutable_program()->mutable_parameter_blocks(); |
| 490 | |
| 491 | // "z" is the last parameter; save it for later and pop it off temporarily. |
| 492 | // Note that "z" will still get read during evaluation, so it cannot be |
| 493 | // deleted at this point. |
| 494 | ParameterBlock* parameter_block_z = parameter_blocks->back(); |
| 495 | parameter_blocks->pop_back(); |
| 496 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 497 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 498 | ExpectedEvaluation expected = { |
| 499 | // Rows/columns |
| 500 | 9, 5, |
| 501 | // Cost |
| 502 | // f g h |
| 503 | ( 1 + 4 + 1 + 4 + 9 + 1 + 4 + 9 + 16) / 2.0, |
| 504 | // Residuals |
| 505 | { 1.0, 2.0, // f |
| 506 | 1.0, 2.0, 3.0, // g |
| 507 | 1.0, 2.0, 3.0, 4.0 // h |
| 508 | }, |
| 509 | // Gradient |
| 510 | { 15.0, 30.0, // x |
| 511 | 33.0, 66.0, 99.0, // y |
| 512 | }, |
| 513 | // Jacobian |
| 514 | // x y |
| 515 | { /* f(x, y) */ 1, 2, 1, 2, 3, |
| 516 | 1, 2, 1, 2, 3, |
| 517 | |
| 518 | /* g(x, z) */ 2, 4, 0, 0, 0, |
| 519 | 2, 4, 0, 0, 0, |
| 520 | 2, 4, 0, 0, 0, |
| 521 | |
| 522 | /* h(y, z) */ 0, 0, 3, 6, 9, |
| 523 | 0, 0, 3, 6, 9, |
| 524 | 0, 0, 3, 6, 9, |
| 525 | 0, 0, 3, 6, 9 |
| 526 | } |
| 527 | }; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 528 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 529 | CheckAllEvaluationCombinations(expected); |
| 530 | |
| 531 | // Restore parameter block z, so it will get freed in a consistent way. |
| 532 | parameter_blocks->push_back(parameter_block_z); |
| 533 | } |
| 534 | |
| 535 | TEST_P(EvaluatorTest, EvaluatorAbortsForResidualsThatFailToEvaluate) { |
| 536 | // Switch the return value to failure. |
| 537 | problem.AddResidualBlock( |
| 538 | new ParameterIgnoringCostFunction<20, 3, 2, 3, 4>(false), |
| 539 | nullptr, |
| 540 | x, |
| 541 | y, |
| 542 | z); |
| 543 | |
| 544 | // The values are ignored. |
| 545 | double state[9]; |
| 546 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 547 | std::unique_ptr<Evaluator> evaluator = |
| 548 | CreateEvaluator(problem.mutable_program()); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 549 | std::unique_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); |
| 550 | double cost; |
| 551 | EXPECT_FALSE(evaluator->Evaluate(state, &cost, nullptr, nullptr, nullptr)); |
| 552 | } |
| 553 | |
| 554 | // In the pairs, the first argument is the linear solver type, and the second |
| 555 | // argument is num_eliminate_blocks. Changing the num_eliminate_blocks only |
| 556 | // makes sense for the schur-based solvers. |
| 557 | // |
| 558 | // Try all values of num_eliminate_blocks that make sense given that in the |
| 559 | // tests a maximum of 4 parameter blocks are present. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 560 | INSTANTIATE_TEST_SUITE_P( |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 561 | LinearSolvers, |
| 562 | EvaluatorTest, |
| 563 | ::testing::Values(EvaluatorTestOptions(DENSE_QR, 0), |
| 564 | EvaluatorTestOptions(DENSE_SCHUR, 0), |
| 565 | EvaluatorTestOptions(DENSE_SCHUR, 1), |
| 566 | EvaluatorTestOptions(DENSE_SCHUR, 2), |
| 567 | EvaluatorTestOptions(DENSE_SCHUR, 3), |
| 568 | EvaluatorTestOptions(DENSE_SCHUR, 4), |
| 569 | EvaluatorTestOptions(SPARSE_SCHUR, 0), |
| 570 | EvaluatorTestOptions(SPARSE_SCHUR, 1), |
| 571 | EvaluatorTestOptions(SPARSE_SCHUR, 2), |
| 572 | EvaluatorTestOptions(SPARSE_SCHUR, 3), |
| 573 | EvaluatorTestOptions(SPARSE_SCHUR, 4), |
| 574 | EvaluatorTestOptions(ITERATIVE_SCHUR, 0), |
| 575 | EvaluatorTestOptions(ITERATIVE_SCHUR, 1), |
| 576 | EvaluatorTestOptions(ITERATIVE_SCHUR, 2), |
| 577 | EvaluatorTestOptions(ITERATIVE_SCHUR, 3), |
| 578 | EvaluatorTestOptions(ITERATIVE_SCHUR, 4), |
| 579 | EvaluatorTestOptions(SPARSE_NORMAL_CHOLESKY, 0, false), |
| 580 | EvaluatorTestOptions(SPARSE_NORMAL_CHOLESKY, 0, true))); |
| 581 | |
| 582 | // Simple cost function used to check if the evaluator is sensitive to |
| 583 | // state changes. |
| 584 | class ParameterSensitiveCostFunction : public SizedCostFunction<2, 2> { |
| 585 | public: |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 586 | bool Evaluate(double const* const* parameters, |
| 587 | double* residuals, |
| 588 | double** jacobians) const final { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 589 | double x1 = parameters[0][0]; |
| 590 | double x2 = parameters[0][1]; |
| 591 | residuals[0] = x1 * x1; |
| 592 | residuals[1] = x2 * x2; |
| 593 | |
| 594 | if (jacobians != nullptr) { |
| 595 | double* jacobian = jacobians[0]; |
| 596 | if (jacobian != nullptr) { |
| 597 | jacobian[0] = 2.0 * x1; |
| 598 | jacobian[1] = 0.0; |
| 599 | jacobian[2] = 0.0; |
| 600 | jacobian[3] = 2.0 * x2; |
| 601 | } |
| 602 | } |
| 603 | return true; |
| 604 | } |
| 605 | }; |
| 606 | |
| 607 | TEST(Evaluator, EvaluatorRespectsParameterChanges) { |
| 608 | ProblemImpl problem; |
| 609 | |
| 610 | double x[2]; |
| 611 | x[0] = 1.0; |
| 612 | x[1] = 1.0; |
| 613 | |
| 614 | problem.AddResidualBlock(new ParameterSensitiveCostFunction(), nullptr, x); |
| 615 | Program* program = problem.mutable_program(); |
| 616 | program->SetParameterOffsetsAndIndex(); |
| 617 | |
| 618 | Evaluator::Options options; |
| 619 | options.linear_solver_type = DENSE_QR; |
| 620 | options.num_eliminate_blocks = 0; |
| 621 | options.context = problem.context(); |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 622 | std::string error; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 623 | std::unique_ptr<Evaluator> evaluator( |
| 624 | Evaluator::Create(options, program, &error)); |
| 625 | std::unique_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); |
| 626 | |
| 627 | ASSERT_EQ(2, jacobian->num_rows()); |
| 628 | ASSERT_EQ(2, jacobian->num_cols()); |
| 629 | |
| 630 | double state[2]; |
| 631 | state[0] = 2.0; |
| 632 | state[1] = 3.0; |
| 633 | |
| 634 | // The original state of a residual block comes from the user's |
| 635 | // state. So the original state is 1.0, 1.0, and the only way we get |
| 636 | // the 2.0, 3.0 results in the following tests is if it respects the |
| 637 | // values in the state vector. |
| 638 | |
| 639 | // Cost only; no residuals and no jacobian. |
| 640 | { |
| 641 | double cost = -1; |
| 642 | ASSERT_TRUE(evaluator->Evaluate(state, &cost, nullptr, nullptr, nullptr)); |
| 643 | EXPECT_EQ(48.5, cost); |
| 644 | } |
| 645 | |
| 646 | // Cost and residuals, no jacobian. |
| 647 | { |
| 648 | double cost = -1; |
| 649 | double residuals[2] = {-2, -2}; |
| 650 | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, nullptr, nullptr)); |
| 651 | EXPECT_EQ(48.5, cost); |
| 652 | EXPECT_EQ(4, residuals[0]); |
| 653 | EXPECT_EQ(9, residuals[1]); |
| 654 | } |
| 655 | |
| 656 | // Cost, residuals, and jacobian. |
| 657 | { |
| 658 | double cost = -1; |
| 659 | double residuals[2] = {-2, -2}; |
| 660 | SetSparseMatrixConstant(jacobian.get(), -1); |
| 661 | ASSERT_TRUE( |
| 662 | evaluator->Evaluate(state, &cost, residuals, nullptr, jacobian.get())); |
| 663 | EXPECT_EQ(48.5, cost); |
| 664 | EXPECT_EQ(4, residuals[0]); |
| 665 | EXPECT_EQ(9, residuals[1]); |
| 666 | Matrix actual_jacobian; |
| 667 | jacobian->ToDenseMatrix(&actual_jacobian); |
| 668 | |
| 669 | Matrix expected_jacobian(2, 2); |
| 670 | expected_jacobian << 2 * state[0], 0, 0, 2 * state[1]; |
| 671 | |
| 672 | EXPECT_TRUE((actual_jacobian.array() == expected_jacobian.array()).all()) |
| 673 | << "Actual:\n" |
| 674 | << actual_jacobian << "\nExpected:\n" |
| 675 | << expected_jacobian; |
| 676 | } |
| 677 | } |
| 678 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 679 | class HugeCostFunction : public SizedCostFunction<46341, 46345> { |
| 680 | bool Evaluate(double const* const* parameters, |
| 681 | double* residuals, |
| 682 | double** jacobians) const override { |
| 683 | return true; |
| 684 | } |
| 685 | }; |
| 686 | |
| 687 | TEST(Evaluator, LargeProblemDoesNotCauseCrashBlockJacobianWriter) { |
| 688 | ProblemImpl problem; |
| 689 | std::vector<double> x(46345); |
| 690 | |
| 691 | problem.AddResidualBlock(new HugeCostFunction, nullptr, x.data()); |
| 692 | Evaluator::Options options; |
| 693 | options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; |
| 694 | options.context = problem.context(); |
| 695 | options.num_eliminate_blocks = 0; |
| 696 | options.dynamic_sparsity = false; |
| 697 | std::string error; |
| 698 | auto program = problem.mutable_program(); |
| 699 | program->SetParameterOffsetsAndIndex(); |
| 700 | auto evaluator = Evaluator::Create(options, program, &error); |
| 701 | auto jacobian = evaluator->CreateJacobian(); |
| 702 | EXPECT_EQ(jacobian, nullptr); |
| 703 | } |
| 704 | |
| 705 | TEST(Evaluator, LargeProblemDoesNotCauseCrashCompressedRowJacobianWriter) { |
| 706 | ProblemImpl problem; |
| 707 | std::vector<double> x(46345); |
| 708 | |
| 709 | problem.AddResidualBlock(new HugeCostFunction, nullptr, x.data()); |
| 710 | Evaluator::Options options; |
| 711 | // CGNR on CUDA_SPARSE is the only combination that triggers a |
| 712 | // CompressedRowJacobianWriter. |
| 713 | options.linear_solver_type = CGNR; |
| 714 | options.sparse_linear_algebra_library_type = CUDA_SPARSE; |
| 715 | options.context = problem.context(); |
| 716 | options.num_eliminate_blocks = 0; |
| 717 | std::string error; |
| 718 | auto program = problem.mutable_program(); |
| 719 | program->SetParameterOffsetsAndIndex(); |
| 720 | auto evaluator = Evaluator::Create(options, program, &error); |
| 721 | auto jacobian = evaluator->CreateJacobian(); |
| 722 | EXPECT_EQ(jacobian, nullptr); |
| 723 | } |
| 724 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 725 | } // namespace internal |
| 726 | } // namespace ceres |