blob: dcb3cf6c75baf5fd4361d3e93d5f937652103647 [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
Austin Schuh3de38b02024-06-25 18:25:10 -07002// Copyright 2023 Google Inc. All rights reserved.
Austin Schuh70cc9552019-01-21 19:46:48 -08003// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30// keir@google.com (Keir Mierle)
31
32#ifndef CERES_INTERNAL_EVALUATOR_H_
33#define CERES_INTERNAL_EVALUATOR_H_
34
35#include <map>
Austin Schuh3de38b02024-06-25 18:25:10 -070036#include <memory>
Austin Schuh70cc9552019-01-21 19:46:48 -080037#include <string>
38#include <vector>
39
40#include "ceres/context_impl.h"
41#include "ceres/execution_summary.h"
Austin Schuh3de38b02024-06-25 18:25:10 -070042#include "ceres/internal/disable_warnings.h"
43#include "ceres/internal/export.h"
Austin Schuh70cc9552019-01-21 19:46:48 -080044#include "ceres/types.h"
45
46namespace ceres {
47
48struct CRSMatrix;
49class EvaluationCallback;
50
51namespace internal {
52
53class Program;
54class SparseMatrix;
55
56// The Evaluator interface offers a way to interact with a least squares cost
57// function that is useful for an optimizer that wants to minimize the least
58// squares objective. This insulates the optimizer from issues like Jacobian
Austin Schuh3de38b02024-06-25 18:25:10 -070059// storage, manifolds, etc.
60class CERES_NO_EXPORT Evaluator {
Austin Schuh70cc9552019-01-21 19:46:48 -080061 public:
62 virtual ~Evaluator();
63
64 struct Options {
65 int num_threads = 1;
66 int num_eliminate_blocks = -1;
67 LinearSolverType linear_solver_type = DENSE_QR;
Austin Schuh3de38b02024-06-25 18:25:10 -070068 SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type =
69 NO_SPARSE;
Austin Schuh70cc9552019-01-21 19:46:48 -080070 bool dynamic_sparsity = false;
71 ContextImpl* context = nullptr;
72 EvaluationCallback* evaluation_callback = nullptr;
73 };
74
Austin Schuh3de38b02024-06-25 18:25:10 -070075 static std::unique_ptr<Evaluator> Create(const Options& options,
76 Program* program,
77 std::string* error);
Austin Schuh70cc9552019-01-21 19:46:48 -080078
79 // Build and return a sparse matrix for storing and working with the Jacobian
80 // of the objective function. The jacobian has dimensions
81 // NumEffectiveParameters() by NumParameters(), and is typically extremely
82 // sparse. Since the sparsity pattern of the Jacobian remains constant over
83 // the lifetime of the optimization problem, this method is used to
84 // instantiate a SparseMatrix object with the appropriate sparsity structure
85 // (which can be an expensive operation) and then reused by the optimization
86 // algorithm and the various linear solvers.
87 //
88 // It is expected that the classes implementing this interface will be aware
89 // of their client's requirements for the kind of sparse matrix storage and
90 // layout that is needed for an efficient implementation. For example
91 // CompressedRowOptimizationProblem creates a compressed row representation of
92 // the jacobian for use with CHOLMOD, where as BlockOptimizationProblem
93 // creates a BlockSparseMatrix representation of the jacobian for use in the
94 // Schur complement based methods.
Austin Schuh3de38b02024-06-25 18:25:10 -070095 virtual std::unique_ptr<SparseMatrix> CreateJacobian() const = 0;
Austin Schuh70cc9552019-01-21 19:46:48 -080096
97 // Options struct to control Evaluator::Evaluate;
98 struct EvaluateOptions {
99 // If false, the loss function correction is not applied to the
100 // residual blocks.
101 bool apply_loss_function = true;
102
103 // If false, this evaluation point is the same as the last one.
104 bool new_evaluation_point = true;
105 };
106
107 // Evaluate the cost function for the given state. Returns the cost,
108 // residuals, and jacobian in the corresponding arguments. Both residuals and
Austin Schuh3de38b02024-06-25 18:25:10 -0700109 // jacobian are optional; to avoid computing them, pass nullptr.
Austin Schuh70cc9552019-01-21 19:46:48 -0800110 //
Austin Schuh3de38b02024-06-25 18:25:10 -0700111 // If non-nullptr, the Jacobian must have a suitable sparsity pattern; only
112 // the values array of the jacobian is modified.
Austin Schuh70cc9552019-01-21 19:46:48 -0800113 //
114 // state is an array of size NumParameters(), cost is a pointer to a single
115 // double, and residuals is an array of doubles of size NumResiduals().
116 virtual bool Evaluate(const EvaluateOptions& evaluate_options,
117 const double* state,
118 double* cost,
119 double* residuals,
120 double* gradient,
121 SparseMatrix* jacobian) = 0;
122
123 // Variant of Evaluator::Evaluate where the user wishes to use the
124 // default EvaluateOptions struct. This is mostly here as a
125 // convenience method.
126 bool Evaluate(const double* state,
127 double* cost,
128 double* residuals,
129 double* gradient,
130 SparseMatrix* jacobian) {
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800131 return Evaluate(
132 EvaluateOptions(), state, cost, residuals, gradient, jacobian);
Austin Schuh70cc9552019-01-21 19:46:48 -0800133 }
134
135 // Make a change delta (of size NumEffectiveParameters()) to state (of size
136 // NumParameters()) and store the result in state_plus_delta.
137 //
Austin Schuh3de38b02024-06-25 18:25:10 -0700138 // In the case that there are no manifolds used, this is equivalent to
Austin Schuh70cc9552019-01-21 19:46:48 -0800139 //
140 // state_plus_delta[i] = state[i] + delta[i] ;
141 //
Austin Schuh3de38b02024-06-25 18:25:10 -0700142 // however, the mapping is more complicated in the case of manifolds
Austin Schuh70cc9552019-01-21 19:46:48 -0800143 // like quaternions. This is the same as the "Plus()" operation in
Austin Schuh3de38b02024-06-25 18:25:10 -0700144 // manifold.h, but operating over the entire state vector for a
Austin Schuh70cc9552019-01-21 19:46:48 -0800145 // problem.
146 virtual bool Plus(const double* state,
147 const double* delta,
148 double* state_plus_delta) const = 0;
149
150 // The number of parameters in the optimization problem.
151 virtual int NumParameters() const = 0;
152
153 // This is the effective number of parameters that the optimizer may adjust.
Austin Schuh3de38b02024-06-25 18:25:10 -0700154 // This applies when there are manifolds on some of the parameters.
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800155 virtual int NumEffectiveParameters() const = 0;
Austin Schuh70cc9552019-01-21 19:46:48 -0800156
157 // The number of residuals in the optimization problem.
158 virtual int NumResiduals() const = 0;
159
160 // The following two methods return copies instead of references so
161 // that the base class implementation does not have to worry about
162 // life time issues. Further, these calls are not expected to be
163 // frequent or performance sensitive.
164 virtual std::map<std::string, CallStatistics> Statistics() const {
Austin Schuh3de38b02024-06-25 18:25:10 -0700165 return {};
Austin Schuh70cc9552019-01-21 19:46:48 -0800166 }
167};
168
169} // namespace internal
170} // namespace ceres
171
Austin Schuh3de38b02024-06-25 18:25:10 -0700172#include "ceres/internal/reenable_warnings.h"
173
Austin Schuh70cc9552019-01-21 19:46:48 -0800174#endif // CERES_INTERNAL_EVALUATOR_H_