Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2023 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin) |
| 30 | |
| 31 | #include <memory> |
| 32 | #include <random> |
| 33 | #include <string> |
| 34 | #include <vector> |
| 35 | |
| 36 | #include "benchmark/benchmark.h" |
| 37 | #include "ceres/block_sparse_matrix.h" |
| 38 | #include "ceres/bundle_adjustment_test_util.h" |
| 39 | #include "ceres/cuda_block_sparse_crs_view.h" |
| 40 | #include "ceres/cuda_partitioned_block_sparse_crs_view.h" |
| 41 | #include "ceres/cuda_sparse_matrix.h" |
| 42 | #include "ceres/cuda_vector.h" |
| 43 | #include "ceres/evaluator.h" |
| 44 | #include "ceres/implicit_schur_complement.h" |
| 45 | #include "ceres/partitioned_matrix_view.h" |
| 46 | #include "ceres/power_series_expansion_preconditioner.h" |
| 47 | #include "ceres/preprocessor.h" |
| 48 | #include "ceres/problem.h" |
| 49 | #include "ceres/problem_impl.h" |
| 50 | #include "ceres/program.h" |
| 51 | #include "ceres/sparse_matrix.h" |
| 52 | |
| 53 | namespace ceres::internal { |
| 54 | |
| 55 | template <typename Derived, typename Base> |
| 56 | std::unique_ptr<Derived> downcast_unique_ptr(std::unique_ptr<Base>& base) { |
| 57 | return std::unique_ptr<Derived>(dynamic_cast<Derived*>(base.release())); |
| 58 | } |
| 59 | |
| 60 | // Benchmark library might invoke benchmark function multiple times. |
| 61 | // In order to save time required to parse BAL data, we ensure that |
| 62 | // each dataset is being loaded at most once. |
| 63 | // Each type of jacobians is also cached after first creation |
| 64 | struct BALData { |
| 65 | using PartitionedView = PartitionedMatrixView<2, 3, 9>; |
| 66 | explicit BALData(const std::string& path) { |
| 67 | bal_problem = std::make_unique<BundleAdjustmentProblem>(path); |
| 68 | CHECK(bal_problem != nullptr); |
| 69 | |
| 70 | auto problem_impl = bal_problem->mutable_problem()->mutable_impl(); |
| 71 | auto preprocessor = Preprocessor::Create(MinimizerType::TRUST_REGION); |
| 72 | |
| 73 | preprocessed_problem = std::make_unique<PreprocessedProblem>(); |
| 74 | Solver::Options options = bal_problem->options(); |
| 75 | options.linear_solver_type = ITERATIVE_SCHUR; |
| 76 | CHECK(preprocessor->Preprocess( |
| 77 | options, problem_impl, preprocessed_problem.get())); |
| 78 | |
| 79 | auto program = preprocessed_problem->reduced_program.get(); |
| 80 | |
| 81 | parameters.resize(program->NumParameters()); |
| 82 | program->ParameterBlocksToStateVector(parameters.data()); |
| 83 | |
| 84 | const int num_residuals = program->NumResiduals(); |
| 85 | b.resize(num_residuals); |
| 86 | |
| 87 | std::mt19937 rng; |
| 88 | std::normal_distribution<double> rnorm; |
| 89 | for (int i = 0; i < num_residuals; ++i) { |
| 90 | b[i] = rnorm(rng); |
| 91 | } |
| 92 | |
| 93 | const int num_parameters = program->NumParameters(); |
| 94 | D.resize(num_parameters); |
| 95 | for (int i = 0; i < num_parameters; ++i) { |
| 96 | D[i] = rnorm(rng); |
| 97 | } |
| 98 | } |
| 99 | |
| 100 | std::unique_ptr<BlockSparseMatrix> CreateBlockSparseJacobian( |
| 101 | ContextImpl* context, bool sequential) { |
| 102 | auto problem = bal_problem->mutable_problem(); |
| 103 | auto problem_impl = problem->mutable_impl(); |
| 104 | CHECK(problem_impl != nullptr); |
| 105 | |
| 106 | Evaluator::Options options; |
| 107 | options.linear_solver_type = ITERATIVE_SCHUR; |
| 108 | options.num_threads = 1; |
| 109 | options.context = context; |
| 110 | options.num_eliminate_blocks = bal_problem->num_points(); |
| 111 | |
| 112 | std::string error; |
| 113 | auto program = preprocessed_problem->reduced_program.get(); |
| 114 | auto evaluator = Evaluator::Create(options, program, &error); |
| 115 | CHECK(evaluator != nullptr); |
| 116 | |
| 117 | auto jacobian = evaluator->CreateJacobian(); |
| 118 | auto block_sparse = downcast_unique_ptr<BlockSparseMatrix>(jacobian); |
| 119 | CHECK(block_sparse != nullptr); |
| 120 | |
| 121 | if (sequential) { |
| 122 | auto block_structure_sequential = |
| 123 | std::make_unique<CompressedRowBlockStructure>( |
| 124 | *block_sparse->block_structure()); |
| 125 | int num_nonzeros = 0; |
| 126 | for (auto& row_block : block_structure_sequential->rows) { |
| 127 | const int row_block_size = row_block.block.size; |
| 128 | for (auto& cell : row_block.cells) { |
| 129 | const int col_block_size = |
| 130 | block_structure_sequential->cols[cell.block_id].size; |
| 131 | cell.position = num_nonzeros; |
| 132 | num_nonzeros += col_block_size * row_block_size; |
| 133 | } |
| 134 | } |
| 135 | block_sparse = std::make_unique<BlockSparseMatrix>( |
| 136 | block_structure_sequential.release(), |
| 137 | #ifndef CERES_NO_CUDA |
| 138 | true |
| 139 | #else |
| 140 | false |
| 141 | #endif |
| 142 | ); |
| 143 | } |
| 144 | |
| 145 | std::mt19937 rng; |
| 146 | std::normal_distribution<double> rnorm; |
| 147 | const int nnz = block_sparse->num_nonzeros(); |
| 148 | auto values = block_sparse->mutable_values(); |
| 149 | for (int i = 0; i < nnz; ++i) { |
| 150 | values[i] = rnorm(rng); |
| 151 | } |
| 152 | |
| 153 | return block_sparse; |
| 154 | } |
| 155 | |
| 156 | std::unique_ptr<CompressedRowSparseMatrix> CreateCompressedRowSparseJacobian( |
| 157 | ContextImpl* context) { |
| 158 | auto block_sparse = BlockSparseJacobian(context); |
| 159 | return block_sparse->ToCompressedRowSparseMatrix(); |
| 160 | } |
| 161 | |
| 162 | const BlockSparseMatrix* BlockSparseJacobian(ContextImpl* context) { |
| 163 | if (!block_sparse_jacobian) { |
| 164 | block_sparse_jacobian = CreateBlockSparseJacobian(context, true); |
| 165 | } |
| 166 | return block_sparse_jacobian.get(); |
| 167 | } |
| 168 | |
| 169 | const BlockSparseMatrix* BlockSparseJacobianPartitioned( |
| 170 | ContextImpl* context) { |
| 171 | if (!block_sparse_jacobian_partitioned) { |
| 172 | block_sparse_jacobian_partitioned = |
| 173 | CreateBlockSparseJacobian(context, false); |
| 174 | } |
| 175 | return block_sparse_jacobian_partitioned.get(); |
| 176 | } |
| 177 | |
| 178 | const CompressedRowSparseMatrix* CompressedRowSparseJacobian( |
| 179 | ContextImpl* context) { |
| 180 | if (!crs_jacobian) { |
| 181 | crs_jacobian = CreateCompressedRowSparseJacobian(context); |
| 182 | } |
| 183 | return crs_jacobian.get(); |
| 184 | } |
| 185 | |
| 186 | std::unique_ptr<PartitionedView> PartitionedMatrixViewJacobian( |
| 187 | const LinearSolver::Options& options) { |
| 188 | auto block_sparse = BlockSparseJacobianPartitioned(options.context); |
| 189 | return std::make_unique<PartitionedView>(options, *block_sparse); |
| 190 | } |
| 191 | |
| 192 | BlockSparseMatrix* BlockDiagonalEtE(const LinearSolver::Options& options) { |
| 193 | if (!block_diagonal_ete) { |
| 194 | auto partitioned_view = PartitionedMatrixViewJacobian(options); |
| 195 | block_diagonal_ete = partitioned_view->CreateBlockDiagonalEtE(); |
| 196 | } |
| 197 | return block_diagonal_ete.get(); |
| 198 | } |
| 199 | |
| 200 | BlockSparseMatrix* BlockDiagonalFtF(const LinearSolver::Options& options) { |
| 201 | if (!block_diagonal_ftf) { |
| 202 | auto partitioned_view = PartitionedMatrixViewJacobian(options); |
| 203 | block_diagonal_ftf = partitioned_view->CreateBlockDiagonalFtF(); |
| 204 | } |
| 205 | return block_diagonal_ftf.get(); |
| 206 | } |
| 207 | |
| 208 | const ImplicitSchurComplement* ImplicitSchurComplementWithoutDiagonal( |
| 209 | const LinearSolver::Options& options) { |
| 210 | auto block_sparse = BlockSparseJacobianPartitioned(options.context); |
| 211 | implicit_schur_complement = |
| 212 | std::make_unique<ImplicitSchurComplement>(options); |
| 213 | implicit_schur_complement->Init(*block_sparse, nullptr, b.data()); |
| 214 | return implicit_schur_complement.get(); |
| 215 | } |
| 216 | |
| 217 | const ImplicitSchurComplement* ImplicitSchurComplementWithDiagonal( |
| 218 | const LinearSolver::Options& options) { |
| 219 | auto block_sparse = BlockSparseJacobianPartitioned(options.context); |
| 220 | implicit_schur_complement_diag = |
| 221 | std::make_unique<ImplicitSchurComplement>(options); |
| 222 | implicit_schur_complement_diag->Init(*block_sparse, D.data(), b.data()); |
| 223 | return implicit_schur_complement_diag.get(); |
| 224 | } |
| 225 | |
| 226 | Vector parameters; |
| 227 | Vector D; |
| 228 | Vector b; |
| 229 | std::unique_ptr<BundleAdjustmentProblem> bal_problem; |
| 230 | std::unique_ptr<PreprocessedProblem> preprocessed_problem; |
| 231 | std::unique_ptr<BlockSparseMatrix> block_sparse_jacobian_partitioned; |
| 232 | std::unique_ptr<BlockSparseMatrix> block_sparse_jacobian; |
| 233 | std::unique_ptr<CompressedRowSparseMatrix> crs_jacobian; |
| 234 | std::unique_ptr<BlockSparseMatrix> block_diagonal_ete; |
| 235 | std::unique_ptr<BlockSparseMatrix> block_diagonal_ftf; |
| 236 | std::unique_ptr<ImplicitSchurComplement> implicit_schur_complement; |
| 237 | std::unique_ptr<ImplicitSchurComplement> implicit_schur_complement_diag; |
| 238 | }; |
| 239 | |
| 240 | static void Residuals(benchmark::State& state, |
| 241 | BALData* data, |
| 242 | ContextImpl* context) { |
| 243 | const int num_threads = static_cast<int>(state.range(0)); |
| 244 | |
| 245 | Evaluator::Options options; |
| 246 | options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; |
| 247 | options.num_threads = num_threads; |
| 248 | options.context = context; |
| 249 | options.num_eliminate_blocks = 0; |
| 250 | |
| 251 | std::string error; |
| 252 | CHECK(data->preprocessed_problem != nullptr); |
| 253 | auto program = data->preprocessed_problem->reduced_program.get(); |
| 254 | CHECK(program != nullptr); |
| 255 | auto evaluator = Evaluator::Create(options, program, &error); |
| 256 | CHECK(evaluator != nullptr); |
| 257 | |
| 258 | double cost = 0.; |
| 259 | Vector residuals = Vector::Zero(program->NumResiduals()); |
| 260 | |
| 261 | Evaluator::EvaluateOptions eval_options; |
| 262 | for (auto _ : state) { |
| 263 | CHECK(evaluator->Evaluate(eval_options, |
| 264 | data->parameters.data(), |
| 265 | &cost, |
| 266 | residuals.data(), |
| 267 | nullptr, |
| 268 | nullptr)); |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | static void ResidualsAndJacobian(benchmark::State& state, |
| 273 | BALData* data, |
| 274 | ContextImpl* context) { |
| 275 | const int num_threads = static_cast<int>(state.range(0)); |
| 276 | |
| 277 | Evaluator::Options options; |
| 278 | options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; |
| 279 | options.num_threads = num_threads; |
| 280 | options.context = context; |
| 281 | options.num_eliminate_blocks = 0; |
| 282 | |
| 283 | std::string error; |
| 284 | CHECK(data->preprocessed_problem != nullptr); |
| 285 | auto program = data->preprocessed_problem->reduced_program.get(); |
| 286 | CHECK(program != nullptr); |
| 287 | auto evaluator = Evaluator::Create(options, program, &error); |
| 288 | CHECK(evaluator != nullptr); |
| 289 | |
| 290 | double cost = 0.; |
| 291 | Vector residuals = Vector::Zero(program->NumResiduals()); |
| 292 | auto jacobian = evaluator->CreateJacobian(); |
| 293 | |
| 294 | Evaluator::EvaluateOptions eval_options; |
| 295 | for (auto _ : state) { |
| 296 | CHECK(evaluator->Evaluate(eval_options, |
| 297 | data->parameters.data(), |
| 298 | &cost, |
| 299 | residuals.data(), |
| 300 | nullptr, |
| 301 | jacobian.get())); |
| 302 | } |
| 303 | } |
| 304 | |
| 305 | static void Plus(benchmark::State& state, BALData* data, ContextImpl* context) { |
| 306 | const int num_threads = static_cast<int>(state.range(0)); |
| 307 | |
| 308 | Evaluator::Options options; |
| 309 | options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; |
| 310 | options.num_threads = num_threads; |
| 311 | options.context = context; |
| 312 | options.num_eliminate_blocks = 0; |
| 313 | |
| 314 | std::string error; |
| 315 | CHECK(data->preprocessed_problem != nullptr); |
| 316 | auto program = data->preprocessed_problem->reduced_program.get(); |
| 317 | CHECK(program != nullptr); |
| 318 | auto evaluator = Evaluator::Create(options, program, &error); |
| 319 | CHECK(evaluator != nullptr); |
| 320 | |
| 321 | Vector state_plus_delta = Vector::Zero(program->NumParameters()); |
| 322 | Vector delta = Vector::Random(program->NumEffectiveParameters()); |
| 323 | |
| 324 | for (auto _ : state) { |
| 325 | CHECK(evaluator->Plus( |
| 326 | data->parameters.data(), delta.data(), state_plus_delta.data())); |
| 327 | } |
| 328 | CHECK_GT(state_plus_delta.squaredNorm(), 0.); |
| 329 | } |
| 330 | |
| 331 | static void PSEPreconditioner(benchmark::State& state, |
| 332 | BALData* data, |
| 333 | ContextImpl* context) { |
| 334 | LinearSolver::Options options; |
| 335 | options.num_threads = static_cast<int>(state.range(0)); |
| 336 | options.elimination_groups.push_back(data->bal_problem->num_points()); |
| 337 | options.context = context; |
| 338 | |
| 339 | auto jacobian = data->ImplicitSchurComplementWithDiagonal(options); |
| 340 | Preconditioner::Options preconditioner_options(options); |
| 341 | |
| 342 | PowerSeriesExpansionPreconditioner preconditioner( |
| 343 | jacobian, 10, 0, preconditioner_options); |
| 344 | |
| 345 | Vector y = Vector::Zero(jacobian->num_cols()); |
| 346 | Vector x = Vector::Random(jacobian->num_cols()); |
| 347 | |
| 348 | for (auto _ : state) { |
| 349 | preconditioner.RightMultiplyAndAccumulate(x.data(), y.data()); |
| 350 | } |
| 351 | CHECK_GT(y.squaredNorm(), 0.); |
| 352 | } |
| 353 | |
| 354 | static void PMVRightMultiplyAndAccumulateF(benchmark::State& state, |
| 355 | BALData* data, |
| 356 | ContextImpl* context) { |
| 357 | LinearSolver::Options options; |
| 358 | options.num_threads = static_cast<int>(state.range(0)); |
| 359 | options.elimination_groups.push_back(data->bal_problem->num_points()); |
| 360 | options.context = context; |
| 361 | auto jacobian = data->PartitionedMatrixViewJacobian(options); |
| 362 | |
| 363 | Vector y = Vector::Zero(jacobian->num_rows()); |
| 364 | Vector x = Vector::Random(jacobian->num_cols_f()); |
| 365 | |
| 366 | for (auto _ : state) { |
| 367 | jacobian->RightMultiplyAndAccumulateF(x.data(), y.data()); |
| 368 | } |
| 369 | CHECK_GT(y.squaredNorm(), 0.); |
| 370 | } |
| 371 | |
| 372 | static void PMVLeftMultiplyAndAccumulateF(benchmark::State& state, |
| 373 | BALData* data, |
| 374 | ContextImpl* context) { |
| 375 | LinearSolver::Options options; |
| 376 | options.num_threads = static_cast<int>(state.range(0)); |
| 377 | options.elimination_groups.push_back(data->bal_problem->num_points()); |
| 378 | options.context = context; |
| 379 | auto jacobian = data->PartitionedMatrixViewJacobian(options); |
| 380 | |
| 381 | Vector y = Vector::Zero(jacobian->num_cols_f()); |
| 382 | Vector x = Vector::Random(jacobian->num_rows()); |
| 383 | |
| 384 | for (auto _ : state) { |
| 385 | jacobian->LeftMultiplyAndAccumulateF(x.data(), y.data()); |
| 386 | } |
| 387 | CHECK_GT(y.squaredNorm(), 0.); |
| 388 | } |
| 389 | |
| 390 | static void PMVRightMultiplyAndAccumulateE(benchmark::State& state, |
| 391 | BALData* data, |
| 392 | ContextImpl* context) { |
| 393 | LinearSolver::Options options; |
| 394 | options.num_threads = static_cast<int>(state.range(0)); |
| 395 | options.elimination_groups.push_back(data->bal_problem->num_points()); |
| 396 | options.context = context; |
| 397 | auto jacobian = data->PartitionedMatrixViewJacobian(options); |
| 398 | |
| 399 | Vector y = Vector::Zero(jacobian->num_rows()); |
| 400 | Vector x = Vector::Random(jacobian->num_cols_e()); |
| 401 | |
| 402 | for (auto _ : state) { |
| 403 | jacobian->RightMultiplyAndAccumulateE(x.data(), y.data()); |
| 404 | } |
| 405 | CHECK_GT(y.squaredNorm(), 0.); |
| 406 | } |
| 407 | |
| 408 | static void PMVLeftMultiplyAndAccumulateE(benchmark::State& state, |
| 409 | BALData* data, |
| 410 | ContextImpl* context) { |
| 411 | LinearSolver::Options options; |
| 412 | options.num_threads = static_cast<int>(state.range(0)); |
| 413 | options.elimination_groups.push_back(data->bal_problem->num_points()); |
| 414 | options.context = context; |
| 415 | auto jacobian = data->PartitionedMatrixViewJacobian(options); |
| 416 | |
| 417 | Vector y = Vector::Zero(jacobian->num_cols_e()); |
| 418 | Vector x = Vector::Random(jacobian->num_rows()); |
| 419 | |
| 420 | for (auto _ : state) { |
| 421 | jacobian->LeftMultiplyAndAccumulateE(x.data(), y.data()); |
| 422 | } |
| 423 | CHECK_GT(y.squaredNorm(), 0.); |
| 424 | } |
| 425 | |
| 426 | static void PMVUpdateBlockDiagonalEtE(benchmark::State& state, |
| 427 | BALData* data, |
| 428 | ContextImpl* context) { |
| 429 | LinearSolver::Options options; |
| 430 | options.num_threads = static_cast<int>(state.range(0)); |
| 431 | options.elimination_groups.push_back(data->bal_problem->num_points()); |
| 432 | options.context = context; |
| 433 | auto jacobian = data->PartitionedMatrixViewJacobian(options); |
| 434 | auto block_diagonal_ete = data->BlockDiagonalEtE(options); |
| 435 | |
| 436 | for (auto _ : state) { |
| 437 | jacobian->UpdateBlockDiagonalEtE(block_diagonal_ete); |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | static void PMVUpdateBlockDiagonalFtF(benchmark::State& state, |
| 442 | BALData* data, |
| 443 | ContextImpl* context) { |
| 444 | LinearSolver::Options options; |
| 445 | options.num_threads = static_cast<int>(state.range(0)); |
| 446 | options.elimination_groups.push_back(data->bal_problem->num_points()); |
| 447 | options.context = context; |
| 448 | auto jacobian = data->PartitionedMatrixViewJacobian(options); |
| 449 | auto block_diagonal_ftf = data->BlockDiagonalFtF(options); |
| 450 | |
| 451 | for (auto _ : state) { |
| 452 | jacobian->UpdateBlockDiagonalFtF(block_diagonal_ftf); |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | static void ISCRightMultiplyNoDiag(benchmark::State& state, |
| 457 | BALData* data, |
| 458 | ContextImpl* context) { |
| 459 | LinearSolver::Options options; |
| 460 | options.num_threads = static_cast<int>(state.range(0)); |
| 461 | options.elimination_groups.push_back(data->bal_problem->num_points()); |
| 462 | options.context = context; |
| 463 | auto jacobian = data->ImplicitSchurComplementWithoutDiagonal(options); |
| 464 | |
| 465 | Vector y = Vector::Zero(jacobian->num_rows()); |
| 466 | Vector x = Vector::Random(jacobian->num_cols()); |
| 467 | for (auto _ : state) { |
| 468 | jacobian->RightMultiplyAndAccumulate(x.data(), y.data()); |
| 469 | } |
| 470 | CHECK_GT(y.squaredNorm(), 0.); |
| 471 | } |
| 472 | |
| 473 | static void ISCRightMultiplyDiag(benchmark::State& state, |
| 474 | BALData* data, |
| 475 | ContextImpl* context) { |
| 476 | LinearSolver::Options options; |
| 477 | options.num_threads = static_cast<int>(state.range(0)); |
| 478 | options.elimination_groups.push_back(data->bal_problem->num_points()); |
| 479 | options.context = context; |
| 480 | |
| 481 | auto jacobian = data->ImplicitSchurComplementWithDiagonal(options); |
| 482 | |
| 483 | Vector y = Vector::Zero(jacobian->num_rows()); |
| 484 | Vector x = Vector::Random(jacobian->num_cols()); |
| 485 | for (auto _ : state) { |
| 486 | jacobian->RightMultiplyAndAccumulate(x.data(), y.data()); |
| 487 | } |
| 488 | CHECK_GT(y.squaredNorm(), 0.); |
| 489 | } |
| 490 | |
| 491 | static void JacobianToCRS(benchmark::State& state, |
| 492 | BALData* data, |
| 493 | ContextImpl* context) { |
| 494 | auto jacobian = data->BlockSparseJacobian(context); |
| 495 | |
| 496 | std::unique_ptr<CompressedRowSparseMatrix> matrix; |
| 497 | for (auto _ : state) { |
| 498 | matrix = jacobian->ToCompressedRowSparseMatrix(); |
| 499 | } |
| 500 | CHECK(matrix != nullptr); |
| 501 | } |
| 502 | |
| 503 | #ifndef CERES_NO_CUDA |
| 504 | static void PMVRightMultiplyAndAccumulateFCuda(benchmark::State& state, |
| 505 | BALData* data, |
| 506 | ContextImpl* context) { |
| 507 | LinearSolver::Options options; |
| 508 | options.elimination_groups.push_back(data->bal_problem->num_points()); |
| 509 | options.context = context; |
| 510 | options.num_threads = 1; |
| 511 | auto jacobian = data->PartitionedMatrixViewJacobian(options); |
| 512 | auto underlying_matrix = data->BlockSparseJacobianPartitioned(context); |
| 513 | CudaPartitionedBlockSparseCRSView view( |
| 514 | *underlying_matrix, jacobian->num_col_blocks_e(), context); |
| 515 | |
| 516 | Vector x = Vector::Random(jacobian->num_cols_f()); |
| 517 | CudaVector cuda_x(context, x.size()); |
| 518 | CudaVector cuda_y(context, jacobian->num_rows()); |
| 519 | |
| 520 | cuda_x.CopyFromCpu(x); |
| 521 | cuda_y.SetZero(); |
| 522 | |
| 523 | auto matrix = view.matrix_f(); |
| 524 | for (auto _ : state) { |
| 525 | matrix->RightMultiplyAndAccumulate(cuda_x, &cuda_y); |
| 526 | } |
| 527 | CHECK_GT(cuda_y.Norm(), 0.); |
| 528 | } |
| 529 | |
| 530 | static void PMVLeftMultiplyAndAccumulateFCuda(benchmark::State& state, |
| 531 | BALData* data, |
| 532 | ContextImpl* context) { |
| 533 | LinearSolver::Options options; |
| 534 | options.elimination_groups.push_back(data->bal_problem->num_points()); |
| 535 | options.context = context; |
| 536 | options.num_threads = 1; |
| 537 | auto jacobian = data->PartitionedMatrixViewJacobian(options); |
| 538 | auto underlying_matrix = data->BlockSparseJacobianPartitioned(context); |
| 539 | CudaPartitionedBlockSparseCRSView view( |
| 540 | *underlying_matrix, jacobian->num_col_blocks_e(), context); |
| 541 | |
| 542 | Vector x = Vector::Random(jacobian->num_rows()); |
| 543 | CudaVector cuda_x(context, x.size()); |
| 544 | CudaVector cuda_y(context, jacobian->num_cols_f()); |
| 545 | |
| 546 | cuda_x.CopyFromCpu(x); |
| 547 | cuda_y.SetZero(); |
| 548 | |
| 549 | auto matrix = view.matrix_f(); |
| 550 | for (auto _ : state) { |
| 551 | matrix->LeftMultiplyAndAccumulate(cuda_x, &cuda_y); |
| 552 | } |
| 553 | CHECK_GT(cuda_y.Norm(), 0.); |
| 554 | } |
| 555 | |
| 556 | static void PMVRightMultiplyAndAccumulateECuda(benchmark::State& state, |
| 557 | BALData* data, |
| 558 | ContextImpl* context) { |
| 559 | LinearSolver::Options options; |
| 560 | options.elimination_groups.push_back(data->bal_problem->num_points()); |
| 561 | options.context = context; |
| 562 | options.num_threads = 1; |
| 563 | auto jacobian = data->PartitionedMatrixViewJacobian(options); |
| 564 | auto underlying_matrix = data->BlockSparseJacobianPartitioned(context); |
| 565 | CudaPartitionedBlockSparseCRSView view( |
| 566 | *underlying_matrix, jacobian->num_col_blocks_e(), context); |
| 567 | |
| 568 | Vector x = Vector::Random(jacobian->num_cols_e()); |
| 569 | CudaVector cuda_x(context, x.size()); |
| 570 | CudaVector cuda_y(context, jacobian->num_rows()); |
| 571 | |
| 572 | cuda_x.CopyFromCpu(x); |
| 573 | cuda_y.SetZero(); |
| 574 | |
| 575 | auto matrix = view.matrix_e(); |
| 576 | for (auto _ : state) { |
| 577 | matrix->RightMultiplyAndAccumulate(cuda_x, &cuda_y); |
| 578 | } |
| 579 | CHECK_GT(cuda_y.Norm(), 0.); |
| 580 | } |
| 581 | |
| 582 | static void PMVLeftMultiplyAndAccumulateECuda(benchmark::State& state, |
| 583 | BALData* data, |
| 584 | ContextImpl* context) { |
| 585 | LinearSolver::Options options; |
| 586 | options.elimination_groups.push_back(data->bal_problem->num_points()); |
| 587 | options.context = context; |
| 588 | options.num_threads = 1; |
| 589 | auto jacobian = data->PartitionedMatrixViewJacobian(options); |
| 590 | auto underlying_matrix = data->BlockSparseJacobianPartitioned(context); |
| 591 | CudaPartitionedBlockSparseCRSView view( |
| 592 | *underlying_matrix, jacobian->num_col_blocks_e(), context); |
| 593 | |
| 594 | Vector x = Vector::Random(jacobian->num_rows()); |
| 595 | CudaVector cuda_x(context, x.size()); |
| 596 | CudaVector cuda_y(context, jacobian->num_cols_e()); |
| 597 | |
| 598 | cuda_x.CopyFromCpu(x); |
| 599 | cuda_y.SetZero(); |
| 600 | |
| 601 | auto matrix = view.matrix_e(); |
| 602 | for (auto _ : state) { |
| 603 | matrix->LeftMultiplyAndAccumulate(cuda_x, &cuda_y); |
| 604 | } |
| 605 | CHECK_GT(cuda_y.Norm(), 0.); |
| 606 | } |
| 607 | |
| 608 | // We want CudaBlockSparseCRSView to be not slower than explicit conversion to |
| 609 | // CRS on CPU |
| 610 | static void JacobianToCRSView(benchmark::State& state, |
| 611 | BALData* data, |
| 612 | ContextImpl* context) { |
| 613 | auto jacobian = data->BlockSparseJacobian(context); |
| 614 | |
| 615 | std::unique_ptr<CudaBlockSparseCRSView> matrix; |
| 616 | for (auto _ : state) { |
| 617 | matrix = std::make_unique<CudaBlockSparseCRSView>(*jacobian, context); |
| 618 | } |
| 619 | CHECK(matrix != nullptr); |
| 620 | } |
| 621 | static void JacobianToCRSMatrix(benchmark::State& state, |
| 622 | BALData* data, |
| 623 | ContextImpl* context) { |
| 624 | auto jacobian = data->BlockSparseJacobian(context); |
| 625 | |
| 626 | std::unique_ptr<CudaSparseMatrix> matrix; |
| 627 | std::unique_ptr<CompressedRowSparseMatrix> matrix_cpu; |
| 628 | for (auto _ : state) { |
| 629 | matrix_cpu = jacobian->ToCompressedRowSparseMatrix(); |
| 630 | matrix = std::make_unique<CudaSparseMatrix>(context, *matrix_cpu); |
| 631 | } |
| 632 | CHECK(matrix != nullptr); |
| 633 | } |
| 634 | // Updating values in CudaBlockSparseCRSView should be +- as fast as just |
| 635 | // copying values (time spent in value permutation has to be hidden by PCIe |
| 636 | // transfer) |
| 637 | static void JacobianToCRSViewUpdate(benchmark::State& state, |
| 638 | BALData* data, |
| 639 | ContextImpl* context) { |
| 640 | auto jacobian = data->BlockSparseJacobian(context); |
| 641 | |
| 642 | auto matrix = CudaBlockSparseCRSView(*jacobian, context); |
| 643 | for (auto _ : state) { |
| 644 | matrix.UpdateValues(*jacobian); |
| 645 | } |
| 646 | } |
| 647 | static void JacobianToCRSMatrixUpdate(benchmark::State& state, |
| 648 | BALData* data, |
| 649 | ContextImpl* context) { |
| 650 | auto jacobian = data->BlockSparseJacobian(context); |
| 651 | |
| 652 | auto matrix_cpu = jacobian->ToCompressedRowSparseMatrix(); |
| 653 | auto matrix = std::make_unique<CudaSparseMatrix>(context, *matrix_cpu); |
| 654 | for (auto _ : state) { |
| 655 | CHECK_EQ(cudaSuccess, |
| 656 | cudaMemcpy(matrix->mutable_values(), |
| 657 | matrix_cpu->values(), |
| 658 | matrix->num_nonzeros() * sizeof(double), |
| 659 | cudaMemcpyHostToDevice)); |
| 660 | } |
| 661 | } |
| 662 | #endif |
| 663 | |
| 664 | static void JacobianSquaredColumnNorm(benchmark::State& state, |
| 665 | BALData* data, |
| 666 | ContextImpl* context) { |
| 667 | const int num_threads = static_cast<int>(state.range(0)); |
| 668 | |
| 669 | auto jacobian = data->BlockSparseJacobian(context); |
| 670 | |
| 671 | Vector x = Vector::Zero(jacobian->num_cols()); |
| 672 | |
| 673 | for (auto _ : state) { |
| 674 | jacobian->SquaredColumnNorm(x.data(), context, num_threads); |
| 675 | } |
| 676 | CHECK_GT(x.squaredNorm(), 0.); |
| 677 | } |
| 678 | |
| 679 | static void JacobianScaleColumns(benchmark::State& state, |
| 680 | BALData* data, |
| 681 | ContextImpl* context) { |
| 682 | const int num_threads = static_cast<int>(state.range(0)); |
| 683 | |
| 684 | auto jacobian_const = data->BlockSparseJacobian(context); |
| 685 | auto jacobian = const_cast<BlockSparseMatrix*>(jacobian_const); |
| 686 | |
| 687 | Vector x = Vector::Ones(jacobian->num_cols()); |
| 688 | |
| 689 | for (auto _ : state) { |
| 690 | jacobian->ScaleColumns(x.data(), context, num_threads); |
| 691 | } |
| 692 | } |
| 693 | |
| 694 | static void JacobianRightMultiplyAndAccumulate(benchmark::State& state, |
| 695 | BALData* data, |
| 696 | ContextImpl* context) { |
| 697 | const int num_threads = static_cast<int>(state.range(0)); |
| 698 | |
| 699 | auto jacobian = data->BlockSparseJacobian(context); |
| 700 | |
| 701 | Vector y = Vector::Zero(jacobian->num_rows()); |
| 702 | Vector x = Vector::Random(jacobian->num_cols()); |
| 703 | |
| 704 | for (auto _ : state) { |
| 705 | jacobian->RightMultiplyAndAccumulate( |
| 706 | x.data(), y.data(), context, num_threads); |
| 707 | } |
| 708 | CHECK_GT(y.squaredNorm(), 0.); |
| 709 | } |
| 710 | |
| 711 | static void JacobianLeftMultiplyAndAccumulate(benchmark::State& state, |
| 712 | BALData* data, |
| 713 | ContextImpl* context) { |
| 714 | const int num_threads = static_cast<int>(state.range(0)); |
| 715 | |
| 716 | auto jacobian = data->BlockSparseJacobian(context); |
| 717 | |
| 718 | Vector y = Vector::Zero(jacobian->num_cols()); |
| 719 | Vector x = Vector::Random(jacobian->num_rows()); |
| 720 | |
| 721 | for (auto _ : state) { |
| 722 | jacobian->LeftMultiplyAndAccumulate( |
| 723 | x.data(), y.data(), context, num_threads); |
| 724 | } |
| 725 | CHECK_GT(y.squaredNorm(), 0.); |
| 726 | } |
| 727 | |
| 728 | #ifndef CERES_NO_CUDA |
| 729 | static void JacobianRightMultiplyAndAccumulateCuda(benchmark::State& state, |
| 730 | BALData* data, |
| 731 | ContextImpl* context) { |
| 732 | auto crs_jacobian = data->CompressedRowSparseJacobian(context); |
| 733 | CudaSparseMatrix cuda_jacobian(context, *crs_jacobian); |
| 734 | CudaVector cuda_x(context, 0); |
| 735 | CudaVector cuda_y(context, 0); |
| 736 | |
| 737 | Vector x(crs_jacobian->num_cols()); |
| 738 | Vector y(crs_jacobian->num_rows()); |
| 739 | x.setRandom(); |
| 740 | y.setRandom(); |
| 741 | |
| 742 | cuda_x.CopyFromCpu(x); |
| 743 | cuda_y.CopyFromCpu(y); |
| 744 | double sum = 0; |
| 745 | for (auto _ : state) { |
| 746 | cuda_jacobian.RightMultiplyAndAccumulate(cuda_x, &cuda_y); |
| 747 | sum += cuda_y.Norm(); |
| 748 | CHECK_EQ(cudaDeviceSynchronize(), cudaSuccess); |
| 749 | } |
| 750 | CHECK_NE(sum, 0.0); |
| 751 | } |
| 752 | |
| 753 | static void JacobianLeftMultiplyAndAccumulateCuda(benchmark::State& state, |
| 754 | BALData* data, |
| 755 | ContextImpl* context) { |
| 756 | auto crs_jacobian = data->CompressedRowSparseJacobian(context); |
| 757 | CudaSparseMatrix cuda_jacobian(context, *crs_jacobian); |
| 758 | CudaVector cuda_x(context, 0); |
| 759 | CudaVector cuda_y(context, 0); |
| 760 | |
| 761 | Vector x(crs_jacobian->num_rows()); |
| 762 | Vector y(crs_jacobian->num_cols()); |
| 763 | x.setRandom(); |
| 764 | y.setRandom(); |
| 765 | |
| 766 | cuda_x.CopyFromCpu(x); |
| 767 | cuda_y.CopyFromCpu(y); |
| 768 | double sum = 0; |
| 769 | for (auto _ : state) { |
| 770 | cuda_jacobian.LeftMultiplyAndAccumulate(cuda_x, &cuda_y); |
| 771 | sum += cuda_y.Norm(); |
| 772 | CHECK_EQ(cudaDeviceSynchronize(), cudaSuccess); |
| 773 | } |
| 774 | CHECK_NE(sum, 0.0); |
| 775 | } |
| 776 | #endif |
| 777 | |
| 778 | } // namespace ceres::internal |
| 779 | |
| 780 | // Older versions of benchmark library might come without ::benchmark::Shutdown |
| 781 | // function. We provide an empty fallback variant of Shutdown function in |
| 782 | // order to support both older and newer versions |
| 783 | namespace benchmark_shutdown_fallback { |
| 784 | template <typename... Args> |
| 785 | void Shutdown(Args... args) {} |
| 786 | }; // namespace benchmark_shutdown_fallback |
| 787 | |
| 788 | int main(int argc, char** argv) { |
| 789 | ::benchmark::Initialize(&argc, argv); |
| 790 | |
| 791 | std::vector<std::unique_ptr<ceres::internal::BALData>> benchmark_data; |
| 792 | if (argc == 1) { |
| 793 | LOG(FATAL) << "No input datasets specified. Usage: " << argv[0] |
| 794 | << " [benchmark flags] path_to_BAL_data_1.txt ... " |
| 795 | "path_to_BAL_data_N.txt"; |
| 796 | return -1; |
| 797 | } |
| 798 | |
| 799 | ceres::internal::ContextImpl context; |
| 800 | context.EnsureMinimumThreads(16); |
| 801 | #ifndef CERES_NO_CUDA |
| 802 | std::string message; |
| 803 | context.InitCuda(&message); |
| 804 | #endif |
| 805 | |
| 806 | for (int i = 1; i < argc; ++i) { |
| 807 | const std::string path(argv[i]); |
| 808 | const std::string name_residuals = "Residuals<" + path + ">"; |
| 809 | benchmark_data.emplace_back( |
| 810 | std::make_unique<ceres::internal::BALData>(path)); |
| 811 | auto data = benchmark_data.back().get(); |
| 812 | ::benchmark::RegisterBenchmark( |
| 813 | name_residuals.c_str(), ceres::internal::Residuals, data, &context) |
| 814 | ->Arg(1) |
| 815 | ->Arg(2) |
| 816 | ->Arg(4) |
| 817 | ->Arg(8) |
| 818 | ->Arg(16); |
| 819 | |
| 820 | const std::string name_jacobians = "ResidualsAndJacobian<" + path + ">"; |
| 821 | ::benchmark::RegisterBenchmark(name_jacobians.c_str(), |
| 822 | ceres::internal::ResidualsAndJacobian, |
| 823 | data, |
| 824 | &context) |
| 825 | ->Arg(1) |
| 826 | ->Arg(2) |
| 827 | ->Arg(4) |
| 828 | ->Arg(8) |
| 829 | ->Arg(16); |
| 830 | |
| 831 | const std::string name_plus = "Plus<" + path + ">"; |
| 832 | ::benchmark::RegisterBenchmark( |
| 833 | name_plus.c_str(), ceres::internal::Plus, data, &context) |
| 834 | ->Arg(1) |
| 835 | ->Arg(2) |
| 836 | ->Arg(4) |
| 837 | ->Arg(8) |
| 838 | ->Arg(16); |
| 839 | |
| 840 | const std::string name_right_product = |
| 841 | "JacobianRightMultiplyAndAccumulate<" + path + ">"; |
| 842 | ::benchmark::RegisterBenchmark( |
| 843 | name_right_product.c_str(), |
| 844 | ceres::internal::JacobianRightMultiplyAndAccumulate, |
| 845 | data, |
| 846 | &context) |
| 847 | ->Arg(1) |
| 848 | ->Arg(2) |
| 849 | ->Arg(4) |
| 850 | ->Arg(8) |
| 851 | ->Arg(16); |
| 852 | |
| 853 | const std::string name_right_product_partitioned_f = |
| 854 | "PMVRightMultiplyAndAccumulateF<" + path + ">"; |
| 855 | ::benchmark::RegisterBenchmark( |
| 856 | name_right_product_partitioned_f.c_str(), |
| 857 | ceres::internal::PMVRightMultiplyAndAccumulateF, |
| 858 | data, |
| 859 | &context) |
| 860 | ->Arg(1) |
| 861 | ->Arg(2) |
| 862 | ->Arg(4) |
| 863 | ->Arg(8) |
| 864 | ->Arg(16); |
| 865 | |
| 866 | #ifndef CERES_NO_CUDA |
| 867 | const std::string name_right_product_partitioned_f_cuda = |
| 868 | "PMVRightMultiplyAndAccumulateFCuda<" + path + ">"; |
| 869 | ::benchmark::RegisterBenchmark( |
| 870 | name_right_product_partitioned_f_cuda.c_str(), |
| 871 | ceres::internal::PMVRightMultiplyAndAccumulateFCuda, |
| 872 | data, |
| 873 | &context); |
| 874 | #endif |
| 875 | |
| 876 | const std::string name_right_product_partitioned_e = |
| 877 | "PMVRightMultiplyAndAccumulateE<" + path + ">"; |
| 878 | ::benchmark::RegisterBenchmark( |
| 879 | name_right_product_partitioned_e.c_str(), |
| 880 | ceres::internal::PMVRightMultiplyAndAccumulateE, |
| 881 | data, |
| 882 | &context) |
| 883 | ->Arg(1) |
| 884 | ->Arg(2) |
| 885 | ->Arg(4) |
| 886 | ->Arg(8) |
| 887 | ->Arg(16); |
| 888 | |
| 889 | #ifndef CERES_NO_CUDA |
| 890 | const std::string name_right_product_partitioned_e_cuda = |
| 891 | "PMVRightMultiplyAndAccumulateECuda<" + path + ">"; |
| 892 | ::benchmark::RegisterBenchmark( |
| 893 | name_right_product_partitioned_e_cuda.c_str(), |
| 894 | ceres::internal::PMVRightMultiplyAndAccumulateECuda, |
| 895 | data, |
| 896 | &context); |
| 897 | #endif |
| 898 | |
| 899 | const std::string name_update_block_diagonal_ftf = |
| 900 | "PMVUpdateBlockDiagonalFtF<" + path + ">"; |
| 901 | ::benchmark::RegisterBenchmark(name_update_block_diagonal_ftf.c_str(), |
| 902 | ceres::internal::PMVUpdateBlockDiagonalFtF, |
| 903 | data, |
| 904 | &context) |
| 905 | ->Arg(1) |
| 906 | ->Arg(2) |
| 907 | ->Arg(4) |
| 908 | ->Arg(8) |
| 909 | ->Arg(16); |
| 910 | |
| 911 | const std::string name_pse = |
| 912 | "PSEPreconditionerRightMultiplyAndAccumulate<" + path + ">"; |
| 913 | ::benchmark::RegisterBenchmark( |
| 914 | name_pse.c_str(), ceres::internal::PSEPreconditioner, data, &context) |
| 915 | ->Arg(1) |
| 916 | ->Arg(2) |
| 917 | ->Arg(4) |
| 918 | ->Arg(8) |
| 919 | ->Arg(16); |
| 920 | |
| 921 | const std::string name_isc_no_diag = |
| 922 | "ISCRightMultiplyAndAccumulate<" + path + ">"; |
| 923 | ::benchmark::RegisterBenchmark(name_isc_no_diag.c_str(), |
| 924 | ceres::internal::ISCRightMultiplyNoDiag, |
| 925 | data, |
| 926 | &context) |
| 927 | ->Arg(1) |
| 928 | ->Arg(2) |
| 929 | ->Arg(4) |
| 930 | ->Arg(8) |
| 931 | ->Arg(16); |
| 932 | |
| 933 | const std::string name_update_block_diagonal_ete = |
| 934 | "PMVUpdateBlockDiagonalEtE<" + path + ">"; |
| 935 | ::benchmark::RegisterBenchmark(name_update_block_diagonal_ete.c_str(), |
| 936 | ceres::internal::PMVUpdateBlockDiagonalEtE, |
| 937 | data, |
| 938 | &context) |
| 939 | ->Arg(1) |
| 940 | ->Arg(2) |
| 941 | ->Arg(4) |
| 942 | ->Arg(8) |
| 943 | ->Arg(16); |
| 944 | const std::string name_isc_diag = |
| 945 | "ISCRightMultiplyAndAccumulateDiag<" + path + ">"; |
| 946 | ::benchmark::RegisterBenchmark(name_isc_diag.c_str(), |
| 947 | ceres::internal::ISCRightMultiplyDiag, |
| 948 | data, |
| 949 | &context) |
| 950 | ->Arg(1) |
| 951 | ->Arg(2) |
| 952 | ->Arg(4) |
| 953 | ->Arg(8) |
| 954 | ->Arg(16); |
| 955 | |
| 956 | #ifndef CERES_NO_CUDA |
| 957 | const std::string name_right_product_cuda = |
| 958 | "JacobianRightMultiplyAndAccumulateCuda<" + path + ">"; |
| 959 | ::benchmark::RegisterBenchmark( |
| 960 | name_right_product_cuda.c_str(), |
| 961 | ceres::internal::JacobianRightMultiplyAndAccumulateCuda, |
| 962 | data, |
| 963 | &context) |
| 964 | ->Arg(1); |
| 965 | #endif |
| 966 | |
| 967 | const std::string name_left_product = |
| 968 | "JacobianLeftMultiplyAndAccumulate<" + path + ">"; |
| 969 | ::benchmark::RegisterBenchmark( |
| 970 | name_left_product.c_str(), |
| 971 | ceres::internal::JacobianLeftMultiplyAndAccumulate, |
| 972 | data, |
| 973 | &context) |
| 974 | ->Arg(1) |
| 975 | ->Arg(2) |
| 976 | ->Arg(4) |
| 977 | ->Arg(8) |
| 978 | ->Arg(16); |
| 979 | |
| 980 | const std::string name_left_product_partitioned_f = |
| 981 | "PMVLeftMultiplyAndAccumulateF<" + path + ">"; |
| 982 | ::benchmark::RegisterBenchmark( |
| 983 | name_left_product_partitioned_f.c_str(), |
| 984 | ceres::internal::PMVLeftMultiplyAndAccumulateF, |
| 985 | data, |
| 986 | &context) |
| 987 | ->Arg(1) |
| 988 | ->Arg(2) |
| 989 | ->Arg(4) |
| 990 | ->Arg(8) |
| 991 | ->Arg(16); |
| 992 | |
| 993 | #ifndef CERES_NO_CUDA |
| 994 | const std::string name_left_product_partitioned_f_cuda = |
| 995 | "PMVLeftMultiplyAndAccumulateFCuda<" + path + ">"; |
| 996 | ::benchmark::RegisterBenchmark( |
| 997 | name_left_product_partitioned_f_cuda.c_str(), |
| 998 | ceres::internal::PMVLeftMultiplyAndAccumulateFCuda, |
| 999 | data, |
| 1000 | &context); |
| 1001 | #endif |
| 1002 | |
| 1003 | const std::string name_left_product_partitioned_e = |
| 1004 | "PMVLeftMultiplyAndAccumulateE<" + path + ">"; |
| 1005 | ::benchmark::RegisterBenchmark( |
| 1006 | name_left_product_partitioned_e.c_str(), |
| 1007 | ceres::internal::PMVLeftMultiplyAndAccumulateE, |
| 1008 | data, |
| 1009 | &context) |
| 1010 | ->Arg(1) |
| 1011 | ->Arg(2) |
| 1012 | ->Arg(4) |
| 1013 | ->Arg(8) |
| 1014 | ->Arg(16); |
| 1015 | |
| 1016 | #ifndef CERES_NO_CUDA |
| 1017 | const std::string name_left_product_partitioned_e_cuda = |
| 1018 | "PMVLeftMultiplyAndAccumulateECuda<" + path + ">"; |
| 1019 | ::benchmark::RegisterBenchmark( |
| 1020 | name_left_product_partitioned_e_cuda.c_str(), |
| 1021 | ceres::internal::PMVLeftMultiplyAndAccumulateECuda, |
| 1022 | data, |
| 1023 | &context); |
| 1024 | #endif |
| 1025 | |
| 1026 | #ifndef CERES_NO_CUDA |
| 1027 | const std::string name_left_product_cuda = |
| 1028 | "JacobianLeftMultiplyAndAccumulateCuda<" + path + ">"; |
| 1029 | ::benchmark::RegisterBenchmark( |
| 1030 | name_left_product_cuda.c_str(), |
| 1031 | ceres::internal::JacobianLeftMultiplyAndAccumulateCuda, |
| 1032 | data, |
| 1033 | &context) |
| 1034 | ->Arg(1); |
| 1035 | #endif |
| 1036 | |
| 1037 | const std::string name_squared_column_norm = |
| 1038 | "JacobianSquaredColumnNorm<" + path + ">"; |
| 1039 | ::benchmark::RegisterBenchmark(name_squared_column_norm.c_str(), |
| 1040 | ceres::internal::JacobianSquaredColumnNorm, |
| 1041 | data, |
| 1042 | &context) |
| 1043 | ->Arg(1) |
| 1044 | ->Arg(2) |
| 1045 | ->Arg(4) |
| 1046 | ->Arg(8) |
| 1047 | ->Arg(16); |
| 1048 | |
| 1049 | const std::string name_scale_columns = "JacobianScaleColumns<" + path + ">"; |
| 1050 | ::benchmark::RegisterBenchmark(name_scale_columns.c_str(), |
| 1051 | ceres::internal::JacobianScaleColumns, |
| 1052 | data, |
| 1053 | &context) |
| 1054 | ->Arg(1) |
| 1055 | ->Arg(2) |
| 1056 | ->Arg(4) |
| 1057 | ->Arg(8) |
| 1058 | ->Arg(16); |
| 1059 | |
| 1060 | const std::string name_to_crs = "JacobianToCRS<" + path + ">"; |
| 1061 | ::benchmark::RegisterBenchmark( |
| 1062 | name_to_crs.c_str(), ceres::internal::JacobianToCRS, data, &context); |
| 1063 | #ifndef CERES_NO_CUDA |
| 1064 | const std::string name_to_crs_view = "JacobianToCRSView<" + path + ">"; |
| 1065 | ::benchmark::RegisterBenchmark(name_to_crs_view.c_str(), |
| 1066 | ceres::internal::JacobianToCRSView, |
| 1067 | data, |
| 1068 | &context); |
| 1069 | const std::string name_to_crs_matrix = "JacobianToCRSMatrix<" + path + ">"; |
| 1070 | ::benchmark::RegisterBenchmark(name_to_crs_matrix.c_str(), |
| 1071 | ceres::internal::JacobianToCRSMatrix, |
| 1072 | data, |
| 1073 | &context); |
| 1074 | const std::string name_to_crs_view_update = |
| 1075 | "JacobianToCRSViewUpdate<" + path + ">"; |
| 1076 | ::benchmark::RegisterBenchmark(name_to_crs_view_update.c_str(), |
| 1077 | ceres::internal::JacobianToCRSViewUpdate, |
| 1078 | data, |
| 1079 | &context); |
| 1080 | const std::string name_to_crs_matrix_update = |
| 1081 | "JacobianToCRSMatrixUpdate<" + path + ">"; |
| 1082 | ::benchmark::RegisterBenchmark(name_to_crs_matrix_update.c_str(), |
| 1083 | ceres::internal::JacobianToCRSMatrixUpdate, |
| 1084 | data, |
| 1085 | &context); |
| 1086 | #endif |
| 1087 | } |
| 1088 | ::benchmark::RunSpecifiedBenchmarks(); |
| 1089 | |
| 1090 | using namespace ::benchmark; |
| 1091 | using namespace benchmark_shutdown_fallback; |
| 1092 | Shutdown(); |
| 1093 | return 0; |
| 1094 | } |