blob: 4837005f3cf2845a5cb5ce09cbf6c5babb02723a [file] [log] [blame]
Austin Schuh3de38b02024-06-25 18:25:10 -07001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2023 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin)
30
31#include "ceres/internal/config.h"
32
33#ifndef CERES_NO_CUDA
34
35#include <glog/logging.h>
36#include <gtest/gtest.h>
37
38#include <numeric>
39
40#include "ceres/cuda_streamed_buffer.h"
41
42namespace ceres::internal {
43
44TEST(CudaStreamedBufferTest, IntegerCopy) {
45 // Offsets and sizes of batches supplied to callback
46 std::vector<std::pair<int, int>> batches;
47 const int kMaxTemporaryArraySize = 16;
48 const int kInputSize = kMaxTemporaryArraySize * 7 + 3;
49 ContextImpl context;
50 std::string message;
51 CHECK(context.InitCuda(&message)) << "InitCuda() failed because: " << message;
52
53 std::vector<int> inputs(kInputSize);
54 std::vector<int> outputs(kInputSize, -1);
55 std::iota(inputs.begin(), inputs.end(), 0);
56
57 CudaStreamedBuffer<int> streamed_buffer(&context, kMaxTemporaryArraySize);
58 streamed_buffer.CopyToGpu(inputs.data(),
59 kInputSize,
60 [&outputs, &batches](const int* device_pointer,
61 int size,
62 int offset,
63 cudaStream_t stream) {
64 batches.emplace_back(offset, size);
65 CHECK_EQ(cudaSuccess,
66 cudaMemcpyAsync(outputs.data() + offset,
67 device_pointer,
68 sizeof(int) * size,
69 cudaMemcpyDeviceToHost,
70 stream));
71 });
72 // All operations in all streams should be completed when CopyToGpu returns
73 // control to the callee
74 for (int i = 0; i < ContextImpl::kNumCudaStreams; ++i) {
75 CHECK_EQ(cudaSuccess, cudaStreamQuery(context.streams_[i]));
76 }
77
78 // Check if every element was visited
79 for (int i = 0; i < kInputSize; ++i) {
80 CHECK_EQ(outputs[i], i);
81 }
82
83 // Check if there is no overlap between batches
84 std::sort(batches.begin(), batches.end());
85 const int num_batches = batches.size();
86 for (int i = 0; i < num_batches; ++i) {
87 const auto [begin, size] = batches[i];
88 const int end = begin + size;
89 CHECK_GE(begin, 0);
90 CHECK_LT(begin, kInputSize);
91
92 CHECK_GT(size, 0);
93 CHECK_LE(end, kInputSize);
94
95 if (i + 1 == num_batches) continue;
96 CHECK_EQ(end, batches[i + 1].first);
97 }
98}
99
100TEST(CudaStreamedBufferTest, IntegerNoCopy) {
101 // Offsets and sizes of batches supplied to callback
102 std::vector<std::pair<int, int>> batches;
103 const int kMaxTemporaryArraySize = 16;
104 const int kInputSize = kMaxTemporaryArraySize * 7 + 3;
105 ContextImpl context;
106 std::string message;
107 CHECK(context.InitCuda(&message)) << "InitCuda() failed because: " << message;
108
109 int* inputs;
110 int* outputs;
111 CHECK_EQ(cudaSuccess,
112 cudaHostAlloc(
113 &inputs, sizeof(int) * kInputSize, cudaHostAllocWriteCombined));
114 CHECK_EQ(
115 cudaSuccess,
116 cudaHostAlloc(&outputs, sizeof(int) * kInputSize, cudaHostAllocDefault));
117
118 std::fill(outputs, outputs + kInputSize, -1);
119 std::iota(inputs, inputs + kInputSize, 0);
120
121 CudaStreamedBuffer<int> streamed_buffer(&context, kMaxTemporaryArraySize);
122 streamed_buffer.CopyToGpu(inputs,
123 kInputSize,
124 [outputs, &batches](const int* device_pointer,
125 int size,
126 int offset,
127 cudaStream_t stream) {
128 batches.emplace_back(offset, size);
129 CHECK_EQ(cudaSuccess,
130 cudaMemcpyAsync(outputs + offset,
131 device_pointer,
132 sizeof(int) * size,
133 cudaMemcpyDeviceToHost,
134 stream));
135 });
136 // All operations in all streams should be completed when CopyToGpu returns
137 // control to the callee
138 for (int i = 0; i < ContextImpl::kNumCudaStreams; ++i) {
139 CHECK_EQ(cudaSuccess, cudaStreamQuery(context.streams_[i]));
140 }
141
142 // Check if every element was visited
143 for (int i = 0; i < kInputSize; ++i) {
144 CHECK_EQ(outputs[i], i);
145 }
146
147 // Check if there is no overlap between batches
148 std::sort(batches.begin(), batches.end());
149 const int num_batches = batches.size();
150 for (int i = 0; i < num_batches; ++i) {
151 const auto [begin, size] = batches[i];
152 const int end = begin + size;
153 CHECK_GE(begin, 0);
154 CHECK_LT(begin, kInputSize);
155
156 CHECK_GT(size, 0);
157 CHECK_LE(end, kInputSize);
158
159 if (i + 1 == num_batches) continue;
160 CHECK_EQ(end, batches[i + 1].first);
161 }
162
163 CHECK_EQ(cudaSuccess, cudaFreeHost(inputs));
164 CHECK_EQ(cudaSuccess, cudaFreeHost(outputs));
165}
166
167} // namespace ceres::internal
168
169#endif // CERES_NO_CUDA