Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2023 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: joydeepb@cs.utexas.edu (Joydeep Biswas) |
| 30 | // |
| 31 | // A CUDA sparse matrix linear operator. |
| 32 | |
| 33 | // This include must come before any #ifndef check on Ceres compile options. |
| 34 | // clang-format off |
| 35 | #include "ceres/internal/config.h" |
| 36 | // clang-format on |
| 37 | |
| 38 | #include "ceres/cuda_sparse_matrix.h" |
| 39 | |
| 40 | #include <math.h> |
| 41 | |
| 42 | #include <memory> |
| 43 | |
| 44 | #include "ceres/block_sparse_matrix.h" |
| 45 | #include "ceres/compressed_row_sparse_matrix.h" |
| 46 | #include "ceres/context_impl.h" |
| 47 | #include "ceres/crs_matrix.h" |
| 48 | #include "ceres/internal/export.h" |
| 49 | #include "ceres/types.h" |
| 50 | #include "ceres/wall_time.h" |
| 51 | |
| 52 | #ifndef CERES_NO_CUDA |
| 53 | |
| 54 | #include "ceres/cuda_buffer.h" |
| 55 | #include "ceres/cuda_kernels_vector_ops.h" |
| 56 | #include "ceres/cuda_vector.h" |
| 57 | #include "cuda_runtime_api.h" |
| 58 | #include "cusparse.h" |
| 59 | |
| 60 | namespace ceres::internal { |
| 61 | namespace { |
| 62 | // Starting in CUDA 11.2.1, CUSPARSE_MV_ALG_DEFAULT was deprecated in favor of |
| 63 | // CUSPARSE_SPMV_ALG_DEFAULT. |
| 64 | #if CUDART_VERSION >= 11021 |
| 65 | const auto kSpMVAlgorithm = CUSPARSE_SPMV_ALG_DEFAULT; |
| 66 | #else // CUDART_VERSION >= 11021 |
| 67 | const auto kSpMVAlgorithm = CUSPARSE_MV_ALG_DEFAULT; |
| 68 | #endif // CUDART_VERSION >= 11021 |
| 69 | size_t GetTempBufferSizeForOp(const cusparseHandle_t& handle, |
| 70 | const cusparseOperation_t op, |
| 71 | const cusparseDnVecDescr_t& x, |
| 72 | const cusparseDnVecDescr_t& y, |
| 73 | const cusparseSpMatDescr_t& A) { |
| 74 | size_t buffer_size; |
| 75 | const double alpha = 1.0; |
| 76 | const double beta = 1.0; |
| 77 | CHECK_NE(A, nullptr); |
| 78 | CHECK_EQ(cusparseSpMV_bufferSize(handle, |
| 79 | op, |
| 80 | &alpha, |
| 81 | A, |
| 82 | x, |
| 83 | &beta, |
| 84 | y, |
| 85 | CUDA_R_64F, |
| 86 | kSpMVAlgorithm, |
| 87 | &buffer_size), |
| 88 | CUSPARSE_STATUS_SUCCESS); |
| 89 | return buffer_size; |
| 90 | } |
| 91 | |
| 92 | size_t GetTempBufferSize(const cusparseHandle_t& handle, |
| 93 | const cusparseDnVecDescr_t& left, |
| 94 | const cusparseDnVecDescr_t& right, |
| 95 | const cusparseSpMatDescr_t& A) { |
| 96 | CHECK_NE(A, nullptr); |
| 97 | return std::max(GetTempBufferSizeForOp( |
| 98 | handle, CUSPARSE_OPERATION_NON_TRANSPOSE, right, left, A), |
| 99 | GetTempBufferSizeForOp( |
| 100 | handle, CUSPARSE_OPERATION_TRANSPOSE, left, right, A)); |
| 101 | } |
| 102 | } // namespace |
| 103 | |
| 104 | CudaSparseMatrix::CudaSparseMatrix(int num_cols, |
| 105 | CudaBuffer<int32_t>&& rows, |
| 106 | CudaBuffer<int32_t>&& cols, |
| 107 | ContextImpl* context) |
| 108 | : num_rows_(rows.size() - 1), |
| 109 | num_cols_(num_cols), |
| 110 | num_nonzeros_(cols.size()), |
| 111 | context_(context), |
| 112 | rows_(std::move(rows)), |
| 113 | cols_(std::move(cols)), |
| 114 | values_(context, num_nonzeros_), |
| 115 | spmv_buffer_(context) { |
| 116 | Initialize(); |
| 117 | } |
| 118 | |
| 119 | CudaSparseMatrix::CudaSparseMatrix(ContextImpl* context, |
| 120 | const CompressedRowSparseMatrix& crs_matrix) |
| 121 | : num_rows_(crs_matrix.num_rows()), |
| 122 | num_cols_(crs_matrix.num_cols()), |
| 123 | num_nonzeros_(crs_matrix.num_nonzeros()), |
| 124 | context_(context), |
| 125 | rows_(context, num_rows_ + 1), |
| 126 | cols_(context, num_nonzeros_), |
| 127 | values_(context, num_nonzeros_), |
| 128 | spmv_buffer_(context) { |
| 129 | rows_.CopyFromCpu(crs_matrix.rows(), num_rows_ + 1); |
| 130 | cols_.CopyFromCpu(crs_matrix.cols(), num_nonzeros_); |
| 131 | values_.CopyFromCpu(crs_matrix.values(), num_nonzeros_); |
| 132 | Initialize(); |
| 133 | } |
| 134 | |
| 135 | CudaSparseMatrix::~CudaSparseMatrix() { |
| 136 | CHECK_EQ(cusparseDestroySpMat(descr_), CUSPARSE_STATUS_SUCCESS); |
| 137 | descr_ = nullptr; |
| 138 | CHECK_EQ(CUSPARSE_STATUS_SUCCESS, cusparseDestroyDnVec(descr_vec_left_)); |
| 139 | CHECK_EQ(CUSPARSE_STATUS_SUCCESS, cusparseDestroyDnVec(descr_vec_right_)); |
| 140 | } |
| 141 | |
| 142 | void CudaSparseMatrix::CopyValuesFromCpu( |
| 143 | const CompressedRowSparseMatrix& crs_matrix) { |
| 144 | // There is no quick and easy way to verify that the structure is unchanged, |
| 145 | // but at least we can check that the size of the matrix and the number of |
| 146 | // nonzeros is unchanged. |
| 147 | CHECK_EQ(num_rows_, crs_matrix.num_rows()); |
| 148 | CHECK_EQ(num_cols_, crs_matrix.num_cols()); |
| 149 | CHECK_EQ(num_nonzeros_, crs_matrix.num_nonzeros()); |
| 150 | values_.CopyFromCpu(crs_matrix.values(), num_nonzeros_); |
| 151 | } |
| 152 | |
| 153 | void CudaSparseMatrix::Initialize() { |
| 154 | CHECK(context_->IsCudaInitialized()); |
| 155 | CHECK_EQ(CUSPARSE_STATUS_SUCCESS, |
| 156 | cusparseCreateCsr(&descr_, |
| 157 | num_rows_, |
| 158 | num_cols_, |
| 159 | num_nonzeros_, |
| 160 | rows_.data(), |
| 161 | cols_.data(), |
| 162 | values_.data(), |
| 163 | CUSPARSE_INDEX_32I, |
| 164 | CUSPARSE_INDEX_32I, |
| 165 | CUSPARSE_INDEX_BASE_ZERO, |
| 166 | CUDA_R_64F)); |
| 167 | |
| 168 | // Note: values_.data() is used as non-zero pointer to device memory |
| 169 | // When there is no non-zero values, data-pointer of values_ array will be a |
| 170 | // nullptr; but in this case left/right products are trivial and temporary |
| 171 | // buffer (and vector descriptors) is not required |
| 172 | if (!num_nonzeros_) return; |
| 173 | |
| 174 | CHECK_EQ(CUSPARSE_STATUS_SUCCESS, |
| 175 | cusparseCreateDnVec( |
| 176 | &descr_vec_left_, num_rows_, values_.data(), CUDA_R_64F)); |
| 177 | CHECK_EQ(CUSPARSE_STATUS_SUCCESS, |
| 178 | cusparseCreateDnVec( |
| 179 | &descr_vec_right_, num_cols_, values_.data(), CUDA_R_64F)); |
| 180 | size_t buffer_size = GetTempBufferSize( |
| 181 | context_->cusparse_handle_, descr_vec_left_, descr_vec_right_, descr_); |
| 182 | spmv_buffer_.Reserve(buffer_size); |
| 183 | } |
| 184 | |
| 185 | void CudaSparseMatrix::SpMv(cusparseOperation_t op, |
| 186 | const cusparseDnVecDescr_t& x, |
| 187 | const cusparseDnVecDescr_t& y) const { |
| 188 | const double alpha = 1.0; |
| 189 | const double beta = 1.0; |
| 190 | |
| 191 | CHECK_EQ(cusparseSpMV(context_->cusparse_handle_, |
| 192 | op, |
| 193 | &alpha, |
| 194 | descr_, |
| 195 | x, |
| 196 | &beta, |
| 197 | y, |
| 198 | CUDA_R_64F, |
| 199 | kSpMVAlgorithm, |
| 200 | spmv_buffer_.data()), |
| 201 | CUSPARSE_STATUS_SUCCESS); |
| 202 | } |
| 203 | |
| 204 | void CudaSparseMatrix::RightMultiplyAndAccumulate(const CudaVector& x, |
| 205 | CudaVector* y) const { |
| 206 | DCHECK(GetTempBufferSize( |
| 207 | context_->cusparse_handle_, y->descr(), x.descr(), descr_) <= |
| 208 | spmv_buffer_.size()); |
| 209 | SpMv(CUSPARSE_OPERATION_NON_TRANSPOSE, x.descr(), y->descr()); |
| 210 | } |
| 211 | |
| 212 | void CudaSparseMatrix::LeftMultiplyAndAccumulate(const CudaVector& x, |
| 213 | CudaVector* y) const { |
| 214 | // TODO(Joydeep Biswas): We should consider storing a transposed copy of the |
| 215 | // matrix by converting CSR to CSC. From the cuSPARSE documentation: |
| 216 | // "In general, opA == CUSPARSE_OPERATION_NON_TRANSPOSE is 3x faster than opA |
| 217 | // != CUSPARSE_OPERATION_NON_TRANSPOSE" |
| 218 | DCHECK(GetTempBufferSize( |
| 219 | context_->cusparse_handle_, x.descr(), y->descr(), descr_) <= |
| 220 | spmv_buffer_.size()); |
| 221 | SpMv(CUSPARSE_OPERATION_TRANSPOSE, x.descr(), y->descr()); |
| 222 | } |
| 223 | |
| 224 | } // namespace ceres::internal |
| 225 | |
| 226 | #endif // CERES_NO_CUDA |