Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2023 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: joydeepb@cs.utexas.edu (Joydeep Biswas) |
| 30 | |
| 31 | #include <string> |
| 32 | |
| 33 | #include "ceres/dense_cholesky.h" |
| 34 | #include "ceres/internal/config.h" |
| 35 | #include "ceres/internal/eigen.h" |
| 36 | #include "glog/logging.h" |
| 37 | #include "gtest/gtest.h" |
| 38 | |
| 39 | namespace ceres::internal { |
| 40 | |
| 41 | #ifndef CERES_NO_CUDA |
| 42 | |
| 43 | TEST(CUDADenseCholesky, InvalidOptionOnCreate) { |
| 44 | LinearSolver::Options options; |
| 45 | ContextImpl context; |
| 46 | options.context = &context; |
| 47 | std::string error; |
| 48 | EXPECT_TRUE(context.InitCuda(&error)) << error; |
| 49 | auto dense_cuda_solver = CUDADenseCholesky::Create(options); |
| 50 | EXPECT_EQ(dense_cuda_solver, nullptr); |
| 51 | } |
| 52 | |
| 53 | // Tests the CUDA Cholesky solver with a simple 4x4 matrix. |
| 54 | TEST(CUDADenseCholesky, Cholesky4x4Matrix) { |
| 55 | Eigen::Matrix4d A; |
| 56 | // clang-format off |
| 57 | A << 4, 12, -16, 0, |
| 58 | 12, 37, -43, 0, |
| 59 | -16, -43, 98, 0, |
| 60 | 0, 0, 0, 1; |
| 61 | // clang-format on |
| 62 | |
| 63 | Vector b = Eigen::Vector4d::Ones(); |
| 64 | LinearSolver::Options options; |
| 65 | ContextImpl context; |
| 66 | options.context = &context; |
| 67 | std::string error; |
| 68 | EXPECT_TRUE(context.InitCuda(&error)) << error; |
| 69 | options.dense_linear_algebra_library_type = CUDA; |
| 70 | auto dense_cuda_solver = CUDADenseCholesky::Create(options); |
| 71 | ASSERT_NE(dense_cuda_solver, nullptr); |
| 72 | std::string error_string; |
| 73 | ASSERT_EQ(dense_cuda_solver->Factorize(A.cols(), A.data(), &error_string), |
| 74 | LinearSolverTerminationType::SUCCESS); |
| 75 | Eigen::Vector4d x = Eigen::Vector4d::Zero(); |
| 76 | ASSERT_EQ(dense_cuda_solver->Solve(b.data(), x.data(), &error_string), |
| 77 | LinearSolverTerminationType::SUCCESS); |
| 78 | static const double kEpsilon = std::numeric_limits<double>::epsilon() * 10; |
| 79 | const Eigen::Vector4d x_expected(113.75 / 3.0, -31.0 / 3.0, 5.0 / 3.0, 1.0); |
| 80 | EXPECT_NEAR((x[0] - x_expected[0]) / x_expected[0], 0.0, kEpsilon); |
| 81 | EXPECT_NEAR((x[1] - x_expected[1]) / x_expected[1], 0.0, kEpsilon); |
| 82 | EXPECT_NEAR((x[2] - x_expected[2]) / x_expected[2], 0.0, kEpsilon); |
| 83 | EXPECT_NEAR((x[3] - x_expected[3]) / x_expected[3], 0.0, kEpsilon); |
| 84 | } |
| 85 | |
| 86 | TEST(CUDADenseCholesky, SingularMatrix) { |
| 87 | Eigen::Matrix3d A; |
| 88 | // clang-format off |
| 89 | A << 1, 0, 0, |
| 90 | 0, 1, 0, |
| 91 | 0, 0, 0; |
| 92 | // clang-format on |
| 93 | |
| 94 | LinearSolver::Options options; |
| 95 | ContextImpl context; |
| 96 | options.context = &context; |
| 97 | std::string error; |
| 98 | EXPECT_TRUE(context.InitCuda(&error)) << error; |
| 99 | options.dense_linear_algebra_library_type = CUDA; |
| 100 | auto dense_cuda_solver = CUDADenseCholesky::Create(options); |
| 101 | ASSERT_NE(dense_cuda_solver, nullptr); |
| 102 | std::string error_string; |
| 103 | ASSERT_EQ(dense_cuda_solver->Factorize(A.cols(), A.data(), &error_string), |
| 104 | LinearSolverTerminationType::FAILURE); |
| 105 | } |
| 106 | |
| 107 | TEST(CUDADenseCholesky, NegativeMatrix) { |
| 108 | Eigen::Matrix3d A; |
| 109 | // clang-format off |
| 110 | A << 1, 0, 0, |
| 111 | 0, 1, 0, |
| 112 | 0, 0, -1; |
| 113 | // clang-format on |
| 114 | |
| 115 | LinearSolver::Options options; |
| 116 | ContextImpl context; |
| 117 | options.context = &context; |
| 118 | std::string error; |
| 119 | EXPECT_TRUE(context.InitCuda(&error)) << error; |
| 120 | options.dense_linear_algebra_library_type = CUDA; |
| 121 | auto dense_cuda_solver = CUDADenseCholesky::Create(options); |
| 122 | ASSERT_NE(dense_cuda_solver, nullptr); |
| 123 | std::string error_string; |
| 124 | ASSERT_EQ(dense_cuda_solver->Factorize(A.cols(), A.data(), &error_string), |
| 125 | LinearSolverTerminationType::FAILURE); |
| 126 | } |
| 127 | |
| 128 | TEST(CUDADenseCholesky, MustFactorizeBeforeSolve) { |
| 129 | const Eigen::Vector3d b = Eigen::Vector3d::Ones(); |
| 130 | LinearSolver::Options options; |
| 131 | ContextImpl context; |
| 132 | options.context = &context; |
| 133 | std::string error; |
| 134 | EXPECT_TRUE(context.InitCuda(&error)) << error; |
| 135 | options.dense_linear_algebra_library_type = CUDA; |
| 136 | auto dense_cuda_solver = CUDADenseCholesky::Create(options); |
| 137 | ASSERT_NE(dense_cuda_solver, nullptr); |
| 138 | std::string error_string; |
| 139 | ASSERT_EQ(dense_cuda_solver->Solve(b.data(), nullptr, &error_string), |
| 140 | LinearSolverTerminationType::FATAL_ERROR); |
| 141 | } |
| 142 | |
| 143 | TEST(CUDADenseCholesky, Randomized1600x1600Tests) { |
| 144 | const int kNumCols = 1600; |
| 145 | using LhsType = Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>; |
| 146 | using RhsType = Eigen::Matrix<double, Eigen::Dynamic, 1>; |
| 147 | using SolutionType = Eigen::Matrix<double, Eigen::Dynamic, 1>; |
| 148 | |
| 149 | LinearSolver::Options options; |
| 150 | ContextImpl context; |
| 151 | options.context = &context; |
| 152 | std::string error; |
| 153 | EXPECT_TRUE(context.InitCuda(&error)) << error; |
| 154 | options.dense_linear_algebra_library_type = ceres::CUDA; |
| 155 | std::unique_ptr<DenseCholesky> dense_cholesky = |
| 156 | CUDADenseCholesky::Create(options); |
| 157 | |
| 158 | const int kNumTrials = 20; |
| 159 | for (int i = 0; i < kNumTrials; ++i) { |
| 160 | LhsType lhs = LhsType::Random(kNumCols, kNumCols); |
| 161 | lhs = lhs.transpose() * lhs; |
| 162 | lhs += 1e-3 * LhsType::Identity(kNumCols, kNumCols); |
| 163 | SolutionType x_expected = SolutionType::Random(kNumCols); |
| 164 | RhsType rhs = lhs * x_expected; |
| 165 | SolutionType x_computed = SolutionType::Zero(kNumCols); |
| 166 | // Sanity check the random matrix sizes. |
| 167 | EXPECT_EQ(lhs.rows(), kNumCols); |
| 168 | EXPECT_EQ(lhs.cols(), kNumCols); |
| 169 | EXPECT_EQ(rhs.rows(), kNumCols); |
| 170 | EXPECT_EQ(rhs.cols(), 1); |
| 171 | EXPECT_EQ(x_expected.rows(), kNumCols); |
| 172 | EXPECT_EQ(x_expected.cols(), 1); |
| 173 | EXPECT_EQ(x_computed.rows(), kNumCols); |
| 174 | EXPECT_EQ(x_computed.cols(), 1); |
| 175 | LinearSolver::Summary summary; |
| 176 | summary.termination_type = dense_cholesky->FactorAndSolve( |
| 177 | kNumCols, lhs.data(), rhs.data(), x_computed.data(), &summary.message); |
| 178 | ASSERT_EQ(summary.termination_type, LinearSolverTerminationType::SUCCESS); |
| 179 | static const double kEpsilon = std::numeric_limits<double>::epsilon() * 3e5; |
| 180 | ASSERT_NEAR( |
| 181 | (x_computed - x_expected).norm() / x_expected.norm(), 0.0, kEpsilon); |
| 182 | } |
| 183 | } |
| 184 | |
| 185 | TEST(CUDADenseCholeskyMixedPrecision, InvalidOptionsOnCreate) { |
| 186 | { |
| 187 | // Did not ask for CUDA, and did not ask for mixed precision. |
| 188 | LinearSolver::Options options; |
| 189 | ContextImpl context; |
| 190 | options.context = &context; |
| 191 | std::string error; |
| 192 | EXPECT_TRUE(context.InitCuda(&error)) << error; |
| 193 | auto solver = CUDADenseCholeskyMixedPrecision::Create(options); |
| 194 | ASSERT_EQ(solver, nullptr); |
| 195 | } |
| 196 | { |
| 197 | // Asked for CUDA, but did not ask for mixed precision. |
| 198 | LinearSolver::Options options; |
| 199 | ContextImpl context; |
| 200 | options.context = &context; |
| 201 | std::string error; |
| 202 | EXPECT_TRUE(context.InitCuda(&error)) << error; |
| 203 | options.dense_linear_algebra_library_type = ceres::CUDA; |
| 204 | auto solver = CUDADenseCholeskyMixedPrecision::Create(options); |
| 205 | ASSERT_EQ(solver, nullptr); |
| 206 | } |
| 207 | } |
| 208 | |
| 209 | // Tests the CUDA Cholesky solver with a simple 4x4 matrix. |
| 210 | TEST(CUDADenseCholeskyMixedPrecision, Cholesky4x4Matrix1Step) { |
| 211 | Eigen::Matrix4d A; |
| 212 | // clang-format off |
| 213 | // A common test Cholesky decomposition test matrix, see : |
| 214 | // https://en.wikipedia.org/w/index.php?title=Cholesky_decomposition&oldid=1080607368#Example |
| 215 | A << 4, 12, -16, 0, |
| 216 | 12, 37, -43, 0, |
| 217 | -16, -43, 98, 0, |
| 218 | 0, 0, 0, 1; |
| 219 | // clang-format on |
| 220 | |
| 221 | const Eigen::Vector4d b = Eigen::Vector4d::Ones(); |
| 222 | LinearSolver::Options options; |
| 223 | options.max_num_refinement_iterations = 0; |
| 224 | ContextImpl context; |
| 225 | options.context = &context; |
| 226 | std::string error; |
| 227 | EXPECT_TRUE(context.InitCuda(&error)) << error; |
| 228 | options.dense_linear_algebra_library_type = CUDA; |
| 229 | options.use_mixed_precision_solves = true; |
| 230 | auto solver = CUDADenseCholeskyMixedPrecision::Create(options); |
| 231 | ASSERT_NE(solver, nullptr); |
| 232 | std::string error_string; |
| 233 | ASSERT_EQ(solver->Factorize(A.cols(), A.data(), &error_string), |
| 234 | LinearSolverTerminationType::SUCCESS); |
| 235 | Eigen::Vector4d x = Eigen::Vector4d::Zero(); |
| 236 | ASSERT_EQ(solver->Solve(b.data(), x.data(), &error_string), |
| 237 | LinearSolverTerminationType::SUCCESS); |
| 238 | // A single step of the mixed precision solver will be equivalent to solving |
| 239 | // in low precision (FP32). Hence the tolerance is defined w.r.t. FP32 epsilon |
| 240 | // instead of FP64 epsilon. |
| 241 | static const double kEpsilon = std::numeric_limits<float>::epsilon() * 10; |
| 242 | const Eigen::Vector4d x_expected(113.75 / 3.0, -31.0 / 3.0, 5.0 / 3.0, 1.0); |
| 243 | EXPECT_NEAR((x[0] - x_expected[0]) / x_expected[0], 0.0, kEpsilon); |
| 244 | EXPECT_NEAR((x[1] - x_expected[1]) / x_expected[1], 0.0, kEpsilon); |
| 245 | EXPECT_NEAR((x[2] - x_expected[2]) / x_expected[2], 0.0, kEpsilon); |
| 246 | EXPECT_NEAR((x[3] - x_expected[3]) / x_expected[3], 0.0, kEpsilon); |
| 247 | } |
| 248 | |
| 249 | // Tests the CUDA Cholesky solver with a simple 4x4 matrix. |
| 250 | TEST(CUDADenseCholeskyMixedPrecision, Cholesky4x4Matrix4Steps) { |
| 251 | Eigen::Matrix4d A; |
| 252 | // clang-format off |
| 253 | A << 4, 12, -16, 0, |
| 254 | 12, 37, -43, 0, |
| 255 | -16, -43, 98, 0, |
| 256 | 0, 0, 0, 1; |
| 257 | // clang-format on |
| 258 | |
| 259 | const Eigen::Vector4d b = Eigen::Vector4d::Ones(); |
| 260 | LinearSolver::Options options; |
| 261 | options.max_num_refinement_iterations = 3; |
| 262 | ContextImpl context; |
| 263 | options.context = &context; |
| 264 | std::string error; |
| 265 | EXPECT_TRUE(context.InitCuda(&error)) << error; |
| 266 | options.dense_linear_algebra_library_type = CUDA; |
| 267 | options.use_mixed_precision_solves = true; |
| 268 | auto solver = CUDADenseCholeskyMixedPrecision::Create(options); |
| 269 | ASSERT_NE(solver, nullptr); |
| 270 | std::string error_string; |
| 271 | ASSERT_EQ(solver->Factorize(A.cols(), A.data(), &error_string), |
| 272 | LinearSolverTerminationType::SUCCESS); |
| 273 | Eigen::Vector4d x = Eigen::Vector4d::Zero(); |
| 274 | ASSERT_EQ(solver->Solve(b.data(), x.data(), &error_string), |
| 275 | LinearSolverTerminationType::SUCCESS); |
| 276 | // The error does not reduce beyond four iterations, and stagnates at this |
| 277 | // level of precision. |
| 278 | static const double kEpsilon = std::numeric_limits<double>::epsilon() * 100; |
| 279 | const Eigen::Vector4d x_expected(113.75 / 3.0, -31.0 / 3.0, 5.0 / 3.0, 1.0); |
| 280 | EXPECT_NEAR((x[0] - x_expected[0]) / x_expected[0], 0.0, kEpsilon); |
| 281 | EXPECT_NEAR((x[1] - x_expected[1]) / x_expected[1], 0.0, kEpsilon); |
| 282 | EXPECT_NEAR((x[2] - x_expected[2]) / x_expected[2], 0.0, kEpsilon); |
| 283 | EXPECT_NEAR((x[3] - x_expected[3]) / x_expected[3], 0.0, kEpsilon); |
| 284 | } |
| 285 | |
| 286 | TEST(CUDADenseCholeskyMixedPrecision, Randomized1600x1600Tests) { |
| 287 | const int kNumCols = 1600; |
| 288 | using LhsType = Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>; |
| 289 | using RhsType = Eigen::Matrix<double, Eigen::Dynamic, 1>; |
| 290 | using SolutionType = Eigen::Matrix<double, Eigen::Dynamic, 1>; |
| 291 | |
| 292 | LinearSolver::Options options; |
| 293 | ContextImpl context; |
| 294 | options.context = &context; |
| 295 | std::string error; |
| 296 | EXPECT_TRUE(context.InitCuda(&error)) << error; |
| 297 | options.dense_linear_algebra_library_type = ceres::CUDA; |
| 298 | options.use_mixed_precision_solves = true; |
| 299 | options.max_num_refinement_iterations = 20; |
| 300 | std::unique_ptr<CUDADenseCholeskyMixedPrecision> dense_cholesky = |
| 301 | CUDADenseCholeskyMixedPrecision::Create(options); |
| 302 | |
| 303 | const int kNumTrials = 20; |
| 304 | for (int i = 0; i < kNumTrials; ++i) { |
| 305 | LhsType lhs = LhsType::Random(kNumCols, kNumCols); |
| 306 | lhs = lhs.transpose() * lhs; |
| 307 | lhs += 1e-3 * LhsType::Identity(kNumCols, kNumCols); |
| 308 | SolutionType x_expected = SolutionType::Random(kNumCols); |
| 309 | RhsType rhs = lhs * x_expected; |
| 310 | SolutionType x_computed = SolutionType::Zero(kNumCols); |
| 311 | // Sanity check the random matrix sizes. |
| 312 | EXPECT_EQ(lhs.rows(), kNumCols); |
| 313 | EXPECT_EQ(lhs.cols(), kNumCols); |
| 314 | EXPECT_EQ(rhs.rows(), kNumCols); |
| 315 | EXPECT_EQ(rhs.cols(), 1); |
| 316 | EXPECT_EQ(x_expected.rows(), kNumCols); |
| 317 | EXPECT_EQ(x_expected.cols(), 1); |
| 318 | EXPECT_EQ(x_computed.rows(), kNumCols); |
| 319 | EXPECT_EQ(x_computed.cols(), 1); |
| 320 | LinearSolver::Summary summary; |
| 321 | summary.termination_type = dense_cholesky->FactorAndSolve( |
| 322 | kNumCols, lhs.data(), rhs.data(), x_computed.data(), &summary.message); |
| 323 | ASSERT_EQ(summary.termination_type, LinearSolverTerminationType::SUCCESS); |
| 324 | static const double kEpsilon = std::numeric_limits<double>::epsilon() * 1e6; |
| 325 | ASSERT_NEAR( |
| 326 | (x_computed - x_expected).norm() / x_expected.norm(), 0.0, kEpsilon); |
| 327 | } |
| 328 | } |
| 329 | |
| 330 | #endif // CERES_NO_CUDA |
| 331 | |
| 332 | } // namespace ceres::internal |