Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 2 | // Copyright 2023 Google Inc. All rights reserved. |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: keir@google.com (Keir Mierle) |
| 30 | // sameeragarwal@google.com (Sameer Agarwal) |
| 31 | // |
| 32 | // Templated functions for manipulating rotations. The templated |
| 33 | // functions are useful when implementing functors for automatic |
| 34 | // differentiation. |
| 35 | // |
| 36 | // In the following, the Quaternions are laid out as 4-vectors, thus: |
| 37 | // |
| 38 | // q[0] scalar part. |
| 39 | // q[1] coefficient of i. |
| 40 | // q[2] coefficient of j. |
| 41 | // q[3] coefficient of k. |
| 42 | // |
| 43 | // where: i*i = j*j = k*k = -1 and i*j = k, j*k = i, k*i = j. |
| 44 | |
| 45 | #ifndef CERES_PUBLIC_ROTATION_H_ |
| 46 | #define CERES_PUBLIC_ROTATION_H_ |
| 47 | |
| 48 | #include <algorithm> |
| 49 | #include <cmath> |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 50 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 51 | #include "ceres/constants.h" |
| 52 | #include "ceres/internal/euler_angles.h" |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 53 | #include "glog/logging.h" |
| 54 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 55 | namespace ceres { |
| 56 | |
| 57 | // Trivial wrapper to index linear arrays as matrices, given a fixed |
| 58 | // column and row stride. When an array "T* array" is wrapped by a |
| 59 | // |
| 60 | // (const) MatrixAdapter<T, row_stride, col_stride> M" |
| 61 | // |
| 62 | // the expression M(i, j) is equivalent to |
| 63 | // |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 64 | // array[i * row_stride + j * col_stride] |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 65 | // |
| 66 | // Conversion functions to and from rotation matrices accept |
| 67 | // MatrixAdapters to permit using row-major and column-major layouts, |
| 68 | // and rotation matrices embedded in larger matrices (such as a 3x4 |
| 69 | // projection matrix). |
| 70 | template <typename T, int row_stride, int col_stride> |
| 71 | struct MatrixAdapter; |
| 72 | |
| 73 | // Convenience functions to create a MatrixAdapter that treats the |
| 74 | // array pointed to by "pointer" as a 3x3 (contiguous) column-major or |
| 75 | // row-major matrix. |
| 76 | template <typename T> |
| 77 | MatrixAdapter<T, 1, 3> ColumnMajorAdapter3x3(T* pointer); |
| 78 | |
| 79 | template <typename T> |
| 80 | MatrixAdapter<T, 3, 1> RowMajorAdapter3x3(T* pointer); |
| 81 | |
| 82 | // Convert a value in combined axis-angle representation to a quaternion. |
| 83 | // The value angle_axis is a triple whose norm is an angle in radians, |
| 84 | // and whose direction is aligned with the axis of rotation, |
| 85 | // and quaternion is a 4-tuple that will contain the resulting quaternion. |
| 86 | // The implementation may be used with auto-differentiation up to the first |
| 87 | // derivative, higher derivatives may have unexpected results near the origin. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 88 | template <typename T> |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 89 | void AngleAxisToQuaternion(const T* angle_axis, T* quaternion); |
| 90 | |
| 91 | // Convert a quaternion to the equivalent combined axis-angle representation. |
| 92 | // The value quaternion must be a unit quaternion - it is not normalized first, |
| 93 | // and angle_axis will be filled with a value whose norm is the angle of |
| 94 | // rotation in radians, and whose direction is the axis of rotation. |
| 95 | // The implementation may be used with auto-differentiation up to the first |
| 96 | // derivative, higher derivatives may have unexpected results near the origin. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 97 | template <typename T> |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 98 | void QuaternionToAngleAxis(const T* quaternion, T* angle_axis); |
| 99 | |
| 100 | // Conversions between 3x3 rotation matrix (in column major order) and |
| 101 | // quaternion rotation representations. Templated for use with |
| 102 | // autodifferentiation. |
| 103 | template <typename T> |
| 104 | void RotationMatrixToQuaternion(const T* R, T* quaternion); |
| 105 | |
| 106 | template <typename T, int row_stride, int col_stride> |
| 107 | void RotationMatrixToQuaternion( |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 108 | const MatrixAdapter<const T, row_stride, col_stride>& R, T* quaternion); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 109 | |
| 110 | // Conversions between 3x3 rotation matrix (in column major order) and |
| 111 | // axis-angle rotation representations. Templated for use with |
| 112 | // autodifferentiation. |
| 113 | template <typename T> |
| 114 | void RotationMatrixToAngleAxis(const T* R, T* angle_axis); |
| 115 | |
| 116 | template <typename T, int row_stride, int col_stride> |
| 117 | void RotationMatrixToAngleAxis( |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 118 | const MatrixAdapter<const T, row_stride, col_stride>& R, T* angle_axis); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 119 | |
| 120 | template <typename T> |
| 121 | void AngleAxisToRotationMatrix(const T* angle_axis, T* R); |
| 122 | |
| 123 | template <typename T, int row_stride, int col_stride> |
| 124 | void AngleAxisToRotationMatrix( |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 125 | const T* angle_axis, const MatrixAdapter<T, row_stride, col_stride>& R); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 126 | |
| 127 | // Conversions between 3x3 rotation matrix (in row major order) and |
| 128 | // Euler angle (in degrees) rotation representations. |
| 129 | // |
| 130 | // The {pitch,roll,yaw} Euler angles are rotations around the {x,y,z} |
| 131 | // axes, respectively. They are applied in that same order, so the |
| 132 | // total rotation R is Rz * Ry * Rx. |
| 133 | template <typename T> |
| 134 | void EulerAnglesToRotationMatrix(const T* euler, int row_stride, T* R); |
| 135 | |
| 136 | template <typename T, int row_stride, int col_stride> |
| 137 | void EulerAnglesToRotationMatrix( |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 138 | const T* euler, const MatrixAdapter<T, row_stride, col_stride>& R); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 139 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 140 | // Convert a generic Euler Angle sequence (in radians) to a 3x3 rotation matrix. |
| 141 | // |
| 142 | // Euler Angles define a sequence of 3 rotations about a sequence of axes, |
| 143 | // typically taken to be the X, Y, or Z axes. The last axis may be the same as |
| 144 | // the first axis (e.g. ZYZ) per Euler's original definition of his angles |
| 145 | // (proper Euler angles) or not (e.g. ZYX / yaw-pitch-roll), per common usage in |
| 146 | // the nautical and aerospace fields (Tait-Bryan angles). The three rotations |
| 147 | // may be in a global frame of reference (Extrinsic) or in a body fixed frame of |
| 148 | // reference (Intrinsic) that moves with the rotating object. |
| 149 | // |
| 150 | // Internally, Euler Axis sequences are classified by Ken Shoemake's scheme from |
| 151 | // "Euler angle conversion", Graphics Gems IV, where a choice of axis for the |
| 152 | // first rotation and 3 binary choices: |
| 153 | // 1. Parity of the axis permutation. The axis sequence has Even parity if the |
| 154 | // second axis of rotation is 'greater-than' the first axis of rotation |
| 155 | // according to the order X<Y<Z<X, otherwise it has Odd parity. |
| 156 | // 2. Proper Euler Angles v.s. Tait-Bryan Angles |
| 157 | // 3. Extrinsic Rotations v.s. Intrinsic Rotations |
| 158 | // compactly represent all 24 possible Euler Angle Conventions |
| 159 | // |
| 160 | // One template parameter: EulerSystem must be explicitly given. This parameter |
| 161 | // is a tag named by 'Extrinsic' or 'Intrinsic' followed by three characters in |
| 162 | // the set '[XYZ]', specifying the axis sequence, e.g. ceres::ExtrinsicYZY |
| 163 | // (robotic arms), ceres::IntrinsicZYX (for aerospace), etc. |
| 164 | // |
| 165 | // The order of elements in the input array 'euler' follows the axis sequence |
| 166 | template <typename EulerSystem, typename T> |
| 167 | inline void EulerAnglesToRotation(const T* euler, T* R); |
| 168 | |
| 169 | template <typename EulerSystem, typename T, int row_stride, int col_stride> |
| 170 | void EulerAnglesToRotation(const T* euler, |
| 171 | const MatrixAdapter<T, row_stride, col_stride>& R); |
| 172 | |
| 173 | // Convert a 3x3 rotation matrix to a generic Euler Angle sequence (in radians) |
| 174 | // |
| 175 | // Euler Angles define a sequence of 3 rotations about a sequence of axes, |
| 176 | // typically taken to be the X, Y, or Z axes. The last axis may be the same as |
| 177 | // the first axis (e.g. ZYZ) per Euler's original definition of his angles |
| 178 | // (proper Euler angles) or not (e.g. ZYX / yaw-pitch-roll), per common usage in |
| 179 | // the nautical and aerospace fields (Tait-Bryan angles). The three rotations |
| 180 | // may be in a global frame of reference (Extrinsic) or in a body fixed frame of |
| 181 | // reference (Intrinsic) that moves with the rotating object. |
| 182 | // |
| 183 | // Internally, Euler Axis sequences are classified by Ken Shoemake's scheme from |
| 184 | // "Euler angle conversion", Graphics Gems IV, where a choice of axis for the |
| 185 | // first rotation and 3 binary choices: |
| 186 | // 1. Oddness of the axis permutation, that defines whether the second axis is |
| 187 | // 'greater-than' the first axis according to the order X>Y>Z>X) |
| 188 | // 2. Proper Euler Angles v.s. Tait-Bryan Angles |
| 189 | // 3. Extrinsic Rotations v.s. Intrinsic Rotations |
| 190 | // compactly represent all 24 possible Euler Angle Conventions |
| 191 | // |
| 192 | // One template parameter: EulerSystem must be explicitly given. This parameter |
| 193 | // is a tag named by 'Extrinsic' or 'Intrinsic' followed by three characters in |
| 194 | // the set '[XYZ]', specifying the axis sequence, e.g. ceres::ExtrinsicYZY |
| 195 | // (robotic arms), ceres::IntrinsicZYX (for aerospace), etc. |
| 196 | // |
| 197 | // The order of elements in the output array 'euler' follows the axis sequence |
| 198 | template <typename EulerSystem, typename T> |
| 199 | inline void RotationMatrixToEulerAngles(const T* R, T* euler); |
| 200 | |
| 201 | template <typename EulerSystem, typename T, int row_stride, int col_stride> |
| 202 | void RotationMatrixToEulerAngles( |
| 203 | const MatrixAdapter<const T, row_stride, col_stride>& R, T* euler); |
| 204 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 205 | // Convert a 4-vector to a 3x3 scaled rotation matrix. |
| 206 | // |
| 207 | // The choice of rotation is such that the quaternion [1 0 0 0] goes to an |
| 208 | // identity matrix and for small a, b, c the quaternion [1 a b c] goes to |
| 209 | // the matrix |
| 210 | // |
| 211 | // [ 0 -c b ] |
| 212 | // I + 2 [ c 0 -a ] + higher order terms |
| 213 | // [ -b a 0 ] |
| 214 | // |
| 215 | // which corresponds to a Rodrigues approximation, the last matrix being |
| 216 | // the cross-product matrix of [a b c]. Together with the property that |
| 217 | // R(q1 * q2) = R(q1) * R(q2) this uniquely defines the mapping from q to R. |
| 218 | // |
| 219 | // No normalization of the quaternion is performed, i.e. |
| 220 | // R = ||q||^2 * Q, where Q is an orthonormal matrix |
| 221 | // such that det(Q) = 1 and Q*Q' = I |
| 222 | // |
| 223 | // WARNING: The rotation matrix is ROW MAJOR |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 224 | template <typename T> |
| 225 | inline void QuaternionToScaledRotation(const T q[4], T R[3 * 3]); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 226 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 227 | template <typename T, int row_stride, int col_stride> |
| 228 | inline void QuaternionToScaledRotation( |
| 229 | const T q[4], const MatrixAdapter<T, row_stride, col_stride>& R); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 230 | |
| 231 | // Same as above except that the rotation matrix is normalized by the |
| 232 | // Frobenius norm, so that R * R' = I (and det(R) = 1). |
| 233 | // |
| 234 | // WARNING: The rotation matrix is ROW MAJOR |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 235 | template <typename T> |
| 236 | inline void QuaternionToRotation(const T q[4], T R[3 * 3]); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 237 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 238 | template <typename T, int row_stride, int col_stride> |
| 239 | inline void QuaternionToRotation( |
| 240 | const T q[4], const MatrixAdapter<T, row_stride, col_stride>& R); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 241 | |
| 242 | // Rotates a point pt by a quaternion q: |
| 243 | // |
| 244 | // result = R(q) * pt |
| 245 | // |
| 246 | // Assumes the quaternion is unit norm. This assumption allows us to |
| 247 | // write the transform as (something)*pt + pt, as is clear from the |
| 248 | // formula below. If you pass in a quaternion with |q|^2 = 2 then you |
| 249 | // WILL NOT get back 2 times the result you get for a unit quaternion. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 250 | // |
| 251 | // Inplace rotation is not supported. pt and result must point to different |
| 252 | // memory locations, otherwise the result will be undefined. |
| 253 | template <typename T> |
| 254 | inline void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 255 | |
| 256 | // With this function you do not need to assume that q has unit norm. |
| 257 | // It does assume that the norm is non-zero. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 258 | // |
| 259 | // Inplace rotation is not supported. pt and result must point to different |
| 260 | // memory locations, otherwise the result will be undefined. |
| 261 | template <typename T> |
| 262 | inline void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 263 | |
| 264 | // zw = z * w, where * is the Quaternion product between 4 vectors. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 265 | // |
| 266 | // Inplace quaternion product is not supported. The resulting quaternion zw must |
| 267 | // not share the memory with the input quaternion z and w, otherwise the result |
| 268 | // will be undefined. |
| 269 | template <typename T> |
| 270 | inline void QuaternionProduct(const T z[4], const T w[4], T zw[4]); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 271 | |
| 272 | // xy = x cross y; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 273 | // |
| 274 | // Inplace cross product is not supported. The resulting vector x_cross_y must |
| 275 | // not share the memory with the input vectors x and y, otherwise the result |
| 276 | // will be undefined. |
| 277 | template <typename T> |
| 278 | inline void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 279 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 280 | template <typename T> |
| 281 | inline T DotProduct(const T x[3], const T y[3]); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 282 | |
| 283 | // y = R(angle_axis) * x; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 284 | // |
| 285 | // Inplace rotation is not supported. pt and result must point to different |
| 286 | // memory locations, otherwise the result will be undefined. |
| 287 | template <typename T> |
| 288 | inline void AngleAxisRotatePoint(const T angle_axis[3], |
| 289 | const T pt[3], |
| 290 | T result[3]); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 291 | |
| 292 | // --- IMPLEMENTATION |
| 293 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 294 | template <typename T, int row_stride, int col_stride> |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 295 | struct MatrixAdapter { |
| 296 | T* pointer_; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 297 | explicit MatrixAdapter(T* pointer) : pointer_(pointer) {} |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 298 | |
| 299 | T& operator()(int r, int c) const { |
| 300 | return pointer_[r * row_stride + c * col_stride]; |
| 301 | } |
| 302 | }; |
| 303 | |
| 304 | template <typename T> |
| 305 | MatrixAdapter<T, 1, 3> ColumnMajorAdapter3x3(T* pointer) { |
| 306 | return MatrixAdapter<T, 1, 3>(pointer); |
| 307 | } |
| 308 | |
| 309 | template <typename T> |
| 310 | MatrixAdapter<T, 3, 1> RowMajorAdapter3x3(T* pointer) { |
| 311 | return MatrixAdapter<T, 3, 1>(pointer); |
| 312 | } |
| 313 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 314 | template <typename T> |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 315 | inline void AngleAxisToQuaternion(const T* angle_axis, T* quaternion) { |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 316 | using std::fpclassify; |
| 317 | using std::hypot; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 318 | const T& a0 = angle_axis[0]; |
| 319 | const T& a1 = angle_axis[1]; |
| 320 | const T& a2 = angle_axis[2]; |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 321 | const T theta = hypot(a0, a1, a2); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 322 | |
| 323 | // For points not at the origin, the full conversion is numerically stable. |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 324 | if (fpclassify(theta) != FP_ZERO) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 325 | const T half_theta = theta * T(0.5); |
| 326 | const T k = sin(half_theta) / theta; |
| 327 | quaternion[0] = cos(half_theta); |
| 328 | quaternion[1] = a0 * k; |
| 329 | quaternion[2] = a1 * k; |
| 330 | quaternion[3] = a2 * k; |
| 331 | } else { |
| 332 | // At the origin, sqrt() will produce NaN in the derivative since |
| 333 | // the argument is zero. By approximating with a Taylor series, |
| 334 | // and truncating at one term, the value and first derivatives will be |
| 335 | // computed correctly when Jets are used. |
| 336 | const T k(0.5); |
| 337 | quaternion[0] = T(1.0); |
| 338 | quaternion[1] = a0 * k; |
| 339 | quaternion[2] = a1 * k; |
| 340 | quaternion[3] = a2 * k; |
| 341 | } |
| 342 | } |
| 343 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 344 | template <typename T> |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 345 | inline void QuaternionToAngleAxis(const T* quaternion, T* angle_axis) { |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 346 | using std::fpclassify; |
| 347 | using std::hypot; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 348 | const T& q1 = quaternion[1]; |
| 349 | const T& q2 = quaternion[2]; |
| 350 | const T& q3 = quaternion[3]; |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 351 | const T sin_theta = hypot(q1, q2, q3); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 352 | |
| 353 | // For quaternions representing non-zero rotation, the conversion |
| 354 | // is numerically stable. |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 355 | if (fpclassify(sin_theta) != FP_ZERO) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 356 | const T& cos_theta = quaternion[0]; |
| 357 | |
| 358 | // If cos_theta is negative, theta is greater than pi/2, which |
| 359 | // means that angle for the angle_axis vector which is 2 * theta |
| 360 | // would be greater than pi. |
| 361 | // |
| 362 | // While this will result in the correct rotation, it does not |
| 363 | // result in a normalized angle-axis vector. |
| 364 | // |
| 365 | // In that case we observe that 2 * theta ~ 2 * theta - 2 * pi, |
| 366 | // which is equivalent saying |
| 367 | // |
| 368 | // theta - pi = atan(sin(theta - pi), cos(theta - pi)) |
| 369 | // = atan(-sin(theta), -cos(theta)) |
| 370 | // |
| 371 | const T two_theta = |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 372 | T(2.0) * ((cos_theta < T(0.0)) ? atan2(-sin_theta, -cos_theta) |
| 373 | : atan2(sin_theta, cos_theta)); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 374 | const T k = two_theta / sin_theta; |
| 375 | angle_axis[0] = q1 * k; |
| 376 | angle_axis[1] = q2 * k; |
| 377 | angle_axis[2] = q3 * k; |
| 378 | } else { |
| 379 | // For zero rotation, sqrt() will produce NaN in the derivative since |
| 380 | // the argument is zero. By approximating with a Taylor series, |
| 381 | // and truncating at one term, the value and first derivatives will be |
| 382 | // computed correctly when Jets are used. |
| 383 | const T k(2.0); |
| 384 | angle_axis[0] = q1 * k; |
| 385 | angle_axis[1] = q2 * k; |
| 386 | angle_axis[2] = q3 * k; |
| 387 | } |
| 388 | } |
| 389 | |
| 390 | template <typename T> |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 391 | void RotationMatrixToQuaternion(const T* R, T* quaternion) { |
| 392 | RotationMatrixToQuaternion(ColumnMajorAdapter3x3(R), quaternion); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 393 | } |
| 394 | |
| 395 | // This algorithm comes from "Quaternion Calculus and Fast Animation", |
| 396 | // Ken Shoemake, 1987 SIGGRAPH course notes |
| 397 | template <typename T, int row_stride, int col_stride> |
| 398 | void RotationMatrixToQuaternion( |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 399 | const MatrixAdapter<const T, row_stride, col_stride>& R, T* quaternion) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 400 | const T trace = R(0, 0) + R(1, 1) + R(2, 2); |
| 401 | if (trace >= 0.0) { |
| 402 | T t = sqrt(trace + T(1.0)); |
| 403 | quaternion[0] = T(0.5) * t; |
| 404 | t = T(0.5) / t; |
| 405 | quaternion[1] = (R(2, 1) - R(1, 2)) * t; |
| 406 | quaternion[2] = (R(0, 2) - R(2, 0)) * t; |
| 407 | quaternion[3] = (R(1, 0) - R(0, 1)) * t; |
| 408 | } else { |
| 409 | int i = 0; |
| 410 | if (R(1, 1) > R(0, 0)) { |
| 411 | i = 1; |
| 412 | } |
| 413 | |
| 414 | if (R(2, 2) > R(i, i)) { |
| 415 | i = 2; |
| 416 | } |
| 417 | |
| 418 | const int j = (i + 1) % 3; |
| 419 | const int k = (j + 1) % 3; |
| 420 | T t = sqrt(R(i, i) - R(j, j) - R(k, k) + T(1.0)); |
| 421 | quaternion[i + 1] = T(0.5) * t; |
| 422 | t = T(0.5) / t; |
| 423 | quaternion[0] = (R(k, j) - R(j, k)) * t; |
| 424 | quaternion[j + 1] = (R(j, i) + R(i, j)) * t; |
| 425 | quaternion[k + 1] = (R(k, i) + R(i, k)) * t; |
| 426 | } |
| 427 | } |
| 428 | |
| 429 | // The conversion of a rotation matrix to the angle-axis form is |
| 430 | // numerically problematic when then rotation angle is close to zero |
| 431 | // or to Pi. The following implementation detects when these two cases |
| 432 | // occurs and deals with them by taking code paths that are guaranteed |
| 433 | // to not perform division by a small number. |
| 434 | template <typename T> |
| 435 | inline void RotationMatrixToAngleAxis(const T* R, T* angle_axis) { |
| 436 | RotationMatrixToAngleAxis(ColumnMajorAdapter3x3(R), angle_axis); |
| 437 | } |
| 438 | |
| 439 | template <typename T, int row_stride, int col_stride> |
| 440 | void RotationMatrixToAngleAxis( |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 441 | const MatrixAdapter<const T, row_stride, col_stride>& R, T* angle_axis) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 442 | T quaternion[4]; |
| 443 | RotationMatrixToQuaternion(R, quaternion); |
| 444 | QuaternionToAngleAxis(quaternion, angle_axis); |
| 445 | return; |
| 446 | } |
| 447 | |
| 448 | template <typename T> |
| 449 | inline void AngleAxisToRotationMatrix(const T* angle_axis, T* R) { |
| 450 | AngleAxisToRotationMatrix(angle_axis, ColumnMajorAdapter3x3(R)); |
| 451 | } |
| 452 | |
| 453 | template <typename T, int row_stride, int col_stride> |
| 454 | void AngleAxisToRotationMatrix( |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 455 | const T* angle_axis, const MatrixAdapter<T, row_stride, col_stride>& R) { |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 456 | using std::fpclassify; |
| 457 | using std::hypot; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 458 | static const T kOne = T(1.0); |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 459 | const T theta = hypot(angle_axis[0], angle_axis[1], angle_axis[2]); |
| 460 | if (fpclassify(theta) != FP_ZERO) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 461 | // We want to be careful to only evaluate the square root if the |
| 462 | // norm of the angle_axis vector is greater than zero. Otherwise |
| 463 | // we get a division by zero. |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 464 | const T wx = angle_axis[0] / theta; |
| 465 | const T wy = angle_axis[1] / theta; |
| 466 | const T wz = angle_axis[2] / theta; |
| 467 | |
| 468 | const T costheta = cos(theta); |
| 469 | const T sintheta = sin(theta); |
| 470 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 471 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 472 | R(0, 0) = costheta + wx*wx*(kOne - costheta); |
| 473 | R(1, 0) = wz*sintheta + wx*wy*(kOne - costheta); |
| 474 | R(2, 0) = -wy*sintheta + wx*wz*(kOne - costheta); |
| 475 | R(0, 1) = wx*wy*(kOne - costheta) - wz*sintheta; |
| 476 | R(1, 1) = costheta + wy*wy*(kOne - costheta); |
| 477 | R(2, 1) = wx*sintheta + wy*wz*(kOne - costheta); |
| 478 | R(0, 2) = wy*sintheta + wx*wz*(kOne - costheta); |
| 479 | R(1, 2) = -wx*sintheta + wy*wz*(kOne - costheta); |
| 480 | R(2, 2) = costheta + wz*wz*(kOne - costheta); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 481 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 482 | } else { |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 483 | // At zero, we switch to using the first order Taylor expansion. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 484 | R(0, 0) = kOne; |
| 485 | R(1, 0) = angle_axis[2]; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 486 | R(2, 0) = -angle_axis[1]; |
| 487 | R(0, 1) = -angle_axis[2]; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 488 | R(1, 1) = kOne; |
| 489 | R(2, 1) = angle_axis[0]; |
| 490 | R(0, 2) = angle_axis[1]; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 491 | R(1, 2) = -angle_axis[0]; |
| 492 | R(2, 2) = kOne; |
| 493 | } |
| 494 | } |
| 495 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 496 | template <typename EulerSystem, typename T> |
| 497 | inline void EulerAnglesToRotation(const T* euler, T* R) { |
| 498 | EulerAnglesToRotation<EulerSystem>(euler, RowMajorAdapter3x3(R)); |
| 499 | } |
| 500 | |
| 501 | template <typename EulerSystem, typename T, int row_stride, int col_stride> |
| 502 | void EulerAnglesToRotation(const T* euler, |
| 503 | const MatrixAdapter<T, row_stride, col_stride>& R) { |
| 504 | using std::cos; |
| 505 | using std::sin; |
| 506 | |
| 507 | const auto [i, j, k] = EulerSystem::kAxes; |
| 508 | |
| 509 | T ea[3]; |
| 510 | ea[1] = euler[1]; |
| 511 | if constexpr (EulerSystem::kIsIntrinsic) { |
| 512 | ea[0] = euler[2]; |
| 513 | ea[2] = euler[0]; |
| 514 | } else { |
| 515 | ea[0] = euler[0]; |
| 516 | ea[2] = euler[2]; |
| 517 | } |
| 518 | if constexpr (EulerSystem::kIsParityOdd) { |
| 519 | ea[0] = -ea[0]; |
| 520 | ea[1] = -ea[1]; |
| 521 | ea[2] = -ea[2]; |
| 522 | } |
| 523 | |
| 524 | const T ci = cos(ea[0]); |
| 525 | const T cj = cos(ea[1]); |
| 526 | const T ch = cos(ea[2]); |
| 527 | const T si = sin(ea[0]); |
| 528 | const T sj = sin(ea[1]); |
| 529 | const T sh = sin(ea[2]); |
| 530 | const T cc = ci * ch; |
| 531 | const T cs = ci * sh; |
| 532 | const T sc = si * ch; |
| 533 | const T ss = si * sh; |
| 534 | if constexpr (EulerSystem::kIsProperEuler) { |
| 535 | R(i, i) = cj; |
| 536 | R(i, j) = sj * si; |
| 537 | R(i, k) = sj * ci; |
| 538 | R(j, i) = sj * sh; |
| 539 | R(j, j) = -cj * ss + cc; |
| 540 | R(j, k) = -cj * cs - sc; |
| 541 | R(k, i) = -sj * ch; |
| 542 | R(k, j) = cj * sc + cs; |
| 543 | R(k, k) = cj * cc - ss; |
| 544 | } else { |
| 545 | R(i, i) = cj * ch; |
| 546 | R(i, j) = sj * sc - cs; |
| 547 | R(i, k) = sj * cc + ss; |
| 548 | R(j, i) = cj * sh; |
| 549 | R(j, j) = sj * ss + cc; |
| 550 | R(j, k) = sj * cs - sc; |
| 551 | R(k, i) = -sj; |
| 552 | R(k, j) = cj * si; |
| 553 | R(k, k) = cj * ci; |
| 554 | } |
| 555 | } |
| 556 | |
| 557 | template <typename EulerSystem, typename T> |
| 558 | inline void RotationMatrixToEulerAngles(const T* R, T* euler) { |
| 559 | RotationMatrixToEulerAngles<EulerSystem>(RowMajorAdapter3x3(R), euler); |
| 560 | } |
| 561 | |
| 562 | template <typename EulerSystem, typename T, int row_stride, int col_stride> |
| 563 | void RotationMatrixToEulerAngles( |
| 564 | const MatrixAdapter<const T, row_stride, col_stride>& R, T* euler) { |
| 565 | using std::atan2; |
| 566 | using std::fpclassify; |
| 567 | using std::hypot; |
| 568 | |
| 569 | const auto [i, j, k] = EulerSystem::kAxes; |
| 570 | |
| 571 | T ea[3]; |
| 572 | if constexpr (EulerSystem::kIsProperEuler) { |
| 573 | const T sy = hypot(R(i, j), R(i, k)); |
| 574 | if (fpclassify(sy) != FP_ZERO) { |
| 575 | ea[0] = atan2(R(i, j), R(i, k)); |
| 576 | ea[1] = atan2(sy, R(i, i)); |
| 577 | ea[2] = atan2(R(j, i), -R(k, i)); |
| 578 | } else { |
| 579 | ea[0] = atan2(-R(j, k), R(j, j)); |
| 580 | ea[1] = atan2(sy, R(i, i)); |
| 581 | ea[2] = T(0.0); |
| 582 | } |
| 583 | } else { |
| 584 | const T cy = hypot(R(i, i), R(j, i)); |
| 585 | if (fpclassify(cy) != FP_ZERO) { |
| 586 | ea[0] = atan2(R(k, j), R(k, k)); |
| 587 | ea[1] = atan2(-R(k, i), cy); |
| 588 | ea[2] = atan2(R(j, i), R(i, i)); |
| 589 | } else { |
| 590 | ea[0] = atan2(-R(j, k), R(j, j)); |
| 591 | ea[1] = atan2(-R(k, i), cy); |
| 592 | ea[2] = T(0.0); |
| 593 | } |
| 594 | } |
| 595 | if constexpr (EulerSystem::kIsParityOdd) { |
| 596 | ea[0] = -ea[0]; |
| 597 | ea[1] = -ea[1]; |
| 598 | ea[2] = -ea[2]; |
| 599 | } |
| 600 | euler[1] = ea[1]; |
| 601 | if constexpr (EulerSystem::kIsIntrinsic) { |
| 602 | euler[0] = ea[2]; |
| 603 | euler[2] = ea[0]; |
| 604 | } else { |
| 605 | euler[0] = ea[0]; |
| 606 | euler[2] = ea[2]; |
| 607 | } |
| 608 | |
| 609 | // Proper euler angles are defined for angles in |
| 610 | // [-pi, pi) x [0, pi / 2) x [-pi, pi) |
| 611 | // which is enforced here |
| 612 | if constexpr (EulerSystem::kIsProperEuler) { |
| 613 | const T kPi(constants::pi); |
| 614 | const T kTwoPi(2.0 * kPi); |
| 615 | if (euler[1] < T(0.0) || ea[1] > kPi) { |
| 616 | euler[0] += kPi; |
| 617 | euler[1] = -euler[1]; |
| 618 | euler[2] -= kPi; |
| 619 | } |
| 620 | |
| 621 | for (int i = 0; i < 3; ++i) { |
| 622 | if (euler[i] < -kPi) { |
| 623 | euler[i] += kTwoPi; |
| 624 | } else if (euler[i] > kPi) { |
| 625 | euler[i] -= kTwoPi; |
| 626 | } |
| 627 | } |
| 628 | } |
| 629 | } |
| 630 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 631 | template <typename T> |
| 632 | inline void EulerAnglesToRotationMatrix(const T* euler, |
| 633 | const int row_stride_parameter, |
| 634 | T* R) { |
| 635 | EulerAnglesToRotationMatrix(euler, RowMajorAdapter3x3(R)); |
| 636 | } |
| 637 | |
| 638 | template <typename T, int row_stride, int col_stride> |
| 639 | void EulerAnglesToRotationMatrix( |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 640 | const T* euler, const MatrixAdapter<T, row_stride, col_stride>& R) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 641 | const double kPi = 3.14159265358979323846; |
| 642 | const T degrees_to_radians(kPi / 180.0); |
| 643 | |
| 644 | const T pitch(euler[0] * degrees_to_radians); |
| 645 | const T roll(euler[1] * degrees_to_radians); |
| 646 | const T yaw(euler[2] * degrees_to_radians); |
| 647 | |
| 648 | const T c1 = cos(yaw); |
| 649 | const T s1 = sin(yaw); |
| 650 | const T c2 = cos(roll); |
| 651 | const T s2 = sin(roll); |
| 652 | const T c3 = cos(pitch); |
| 653 | const T s3 = sin(pitch); |
| 654 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 655 | R(0, 0) = c1 * c2; |
| 656 | R(0, 1) = -s1 * c3 + c1 * s2 * s3; |
| 657 | R(0, 2) = s1 * s3 + c1 * s2 * c3; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 658 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 659 | R(1, 0) = s1 * c2; |
| 660 | R(1, 1) = c1 * c3 + s1 * s2 * s3; |
| 661 | R(1, 2) = -c1 * s3 + s1 * s2 * c3; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 662 | |
| 663 | R(2, 0) = -s2; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 664 | R(2, 1) = c2 * s3; |
| 665 | R(2, 2) = c2 * c3; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 666 | } |
| 667 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 668 | template <typename T> |
| 669 | inline void QuaternionToScaledRotation(const T q[4], T R[3 * 3]) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 670 | QuaternionToScaledRotation(q, RowMajorAdapter3x3(R)); |
| 671 | } |
| 672 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 673 | template <typename T, int row_stride, int col_stride> |
| 674 | inline void QuaternionToScaledRotation( |
| 675 | const T q[4], const MatrixAdapter<T, row_stride, col_stride>& R) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 676 | // Make convenient names for elements of q. |
| 677 | T a = q[0]; |
| 678 | T b = q[1]; |
| 679 | T c = q[2]; |
| 680 | T d = q[3]; |
| 681 | // This is not to eliminate common sub-expression, but to |
| 682 | // make the lines shorter so that they fit in 80 columns! |
| 683 | T aa = a * a; |
| 684 | T ab = a * b; |
| 685 | T ac = a * c; |
| 686 | T ad = a * d; |
| 687 | T bb = b * b; |
| 688 | T bc = b * c; |
| 689 | T bd = b * d; |
| 690 | T cc = c * c; |
| 691 | T cd = c * d; |
| 692 | T dd = d * d; |
| 693 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 694 | // clang-format off |
| 695 | R(0, 0) = aa + bb - cc - dd; R(0, 1) = T(2) * (bc - ad); R(0, 2) = T(2) * (ac + bd); |
| 696 | R(1, 0) = T(2) * (ad + bc); R(1, 1) = aa - bb + cc - dd; R(1, 2) = T(2) * (cd - ab); |
| 697 | R(2, 0) = T(2) * (bd - ac); R(2, 1) = T(2) * (ab + cd); R(2, 2) = aa - bb - cc + dd; |
| 698 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 699 | } |
| 700 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 701 | template <typename T> |
| 702 | inline void QuaternionToRotation(const T q[4], T R[3 * 3]) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 703 | QuaternionToRotation(q, RowMajorAdapter3x3(R)); |
| 704 | } |
| 705 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 706 | template <typename T, int row_stride, int col_stride> |
| 707 | inline void QuaternionToRotation( |
| 708 | const T q[4], const MatrixAdapter<T, row_stride, col_stride>& R) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 709 | QuaternionToScaledRotation(q, R); |
| 710 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 711 | T normalizer = q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3]; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 712 | normalizer = T(1) / normalizer; |
| 713 | |
| 714 | for (int i = 0; i < 3; ++i) { |
| 715 | for (int j = 0; j < 3; ++j) { |
| 716 | R(i, j) *= normalizer; |
| 717 | } |
| 718 | } |
| 719 | } |
| 720 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 721 | template <typename T> |
| 722 | inline void UnitQuaternionRotatePoint(const T q[4], |
| 723 | const T pt[3], |
| 724 | T result[3]) { |
| 725 | DCHECK_NE(pt, result) << "Inplace rotation is not supported."; |
| 726 | |
| 727 | // clang-format off |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 728 | T uv0 = q[2] * pt[2] - q[3] * pt[1]; |
| 729 | T uv1 = q[3] * pt[0] - q[1] * pt[2]; |
| 730 | T uv2 = q[1] * pt[1] - q[2] * pt[0]; |
| 731 | uv0 += uv0; |
| 732 | uv1 += uv1; |
| 733 | uv2 += uv2; |
| 734 | result[0] = pt[0] + q[0] * uv0; |
| 735 | result[1] = pt[1] + q[0] * uv1; |
| 736 | result[2] = pt[2] + q[0] * uv2; |
| 737 | result[0] += q[2] * uv2 - q[3] * uv1; |
| 738 | result[1] += q[3] * uv0 - q[1] * uv2; |
| 739 | result[2] += q[1] * uv1 - q[2] * uv0; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 740 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 741 | } |
| 742 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 743 | template <typename T> |
| 744 | inline void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) { |
| 745 | DCHECK_NE(pt, result) << "Inplace rotation is not supported."; |
| 746 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 747 | // 'scale' is 1 / norm(q). |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 748 | const T scale = |
| 749 | T(1) / sqrt(q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3]); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 750 | |
| 751 | // Make unit-norm version of q. |
| 752 | const T unit[4] = { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 753 | scale * q[0], |
| 754 | scale * q[1], |
| 755 | scale * q[2], |
| 756 | scale * q[3], |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 757 | }; |
| 758 | |
| 759 | UnitQuaternionRotatePoint(unit, pt, result); |
| 760 | } |
| 761 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 762 | template <typename T> |
| 763 | inline void QuaternionProduct(const T z[4], const T w[4], T zw[4]) { |
| 764 | DCHECK_NE(z, zw) << "Inplace quaternion product is not supported."; |
| 765 | DCHECK_NE(w, zw) << "Inplace quaternion product is not supported."; |
| 766 | |
| 767 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 768 | zw[0] = z[0] * w[0] - z[1] * w[1] - z[2] * w[2] - z[3] * w[3]; |
| 769 | zw[1] = z[0] * w[1] + z[1] * w[0] + z[2] * w[3] - z[3] * w[2]; |
| 770 | zw[2] = z[0] * w[2] - z[1] * w[3] + z[2] * w[0] + z[3] * w[1]; |
| 771 | zw[3] = z[0] * w[3] + z[1] * w[2] - z[2] * w[1] + z[3] * w[0]; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 772 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 773 | } |
| 774 | |
| 775 | // xy = x cross y; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 776 | template <typename T> |
| 777 | inline void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]) { |
| 778 | DCHECK_NE(x, x_cross_y) << "Inplace cross product is not supported."; |
| 779 | DCHECK_NE(y, x_cross_y) << "Inplace cross product is not supported."; |
| 780 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 781 | x_cross_y[0] = x[1] * y[2] - x[2] * y[1]; |
| 782 | x_cross_y[1] = x[2] * y[0] - x[0] * y[2]; |
| 783 | x_cross_y[2] = x[0] * y[1] - x[1] * y[0]; |
| 784 | } |
| 785 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 786 | template <typename T> |
| 787 | inline T DotProduct(const T x[3], const T y[3]) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 788 | return (x[0] * y[0] + x[1] * y[1] + x[2] * y[2]); |
| 789 | } |
| 790 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 791 | template <typename T> |
| 792 | inline void AngleAxisRotatePoint(const T angle_axis[3], |
| 793 | const T pt[3], |
| 794 | T result[3]) { |
| 795 | DCHECK_NE(pt, result) << "Inplace rotation is not supported."; |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 796 | using std::fpclassify; |
| 797 | using std::hypot; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 798 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 799 | const T theta = hypot(angle_axis[0], angle_axis[1], angle_axis[2]); |
| 800 | |
| 801 | if (fpclassify(theta) != FP_ZERO) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 802 | // Away from zero, use the rodriguez formula |
| 803 | // |
| 804 | // result = pt costheta + |
| 805 | // (w x pt) * sintheta + |
| 806 | // w (w . pt) (1 - costheta) |
| 807 | // |
| 808 | // We want to be careful to only evaluate the square root if the |
| 809 | // norm of the angle_axis vector is greater than zero. Otherwise |
| 810 | // we get a division by zero. |
| 811 | // |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 812 | const T costheta = cos(theta); |
| 813 | const T sintheta = sin(theta); |
| 814 | const T theta_inverse = T(1.0) / theta; |
| 815 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 816 | const T w[3] = {angle_axis[0] * theta_inverse, |
| 817 | angle_axis[1] * theta_inverse, |
| 818 | angle_axis[2] * theta_inverse}; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 819 | |
| 820 | // Explicitly inlined evaluation of the cross product for |
| 821 | // performance reasons. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 822 | const T w_cross_pt[3] = {w[1] * pt[2] - w[2] * pt[1], |
| 823 | w[2] * pt[0] - w[0] * pt[2], |
| 824 | w[0] * pt[1] - w[1] * pt[0]}; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 825 | const T tmp = |
| 826 | (w[0] * pt[0] + w[1] * pt[1] + w[2] * pt[2]) * (T(1.0) - costheta); |
| 827 | |
| 828 | result[0] = pt[0] * costheta + w_cross_pt[0] * sintheta + w[0] * tmp; |
| 829 | result[1] = pt[1] * costheta + w_cross_pt[1] * sintheta + w[1] * tmp; |
| 830 | result[2] = pt[2] * costheta + w_cross_pt[2] * sintheta + w[2] * tmp; |
| 831 | } else { |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 832 | // At zero, the first order Taylor approximation of the rotation |
| 833 | // matrix R corresponding to a vector w and angle theta is |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 834 | // |
| 835 | // R = I + hat(w) * sin(theta) |
| 836 | // |
| 837 | // But sintheta ~ theta and theta * w = angle_axis, which gives us |
| 838 | // |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 839 | // R = I + hat(angle_axis) |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 840 | // |
| 841 | // and actually performing multiplication with the point pt, gives us |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 842 | // R * pt = pt + angle_axis x pt. |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 843 | // |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 844 | // Switching to the Taylor expansion at zero provides meaningful |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 845 | // derivatives when evaluated using Jets. |
| 846 | // |
| 847 | // Explicitly inlined evaluation of the cross product for |
| 848 | // performance reasons. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 849 | const T w_cross_pt[3] = {angle_axis[1] * pt[2] - angle_axis[2] * pt[1], |
| 850 | angle_axis[2] * pt[0] - angle_axis[0] * pt[2], |
| 851 | angle_axis[0] * pt[1] - angle_axis[1] * pt[0]}; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 852 | |
| 853 | result[0] = pt[0] + w_cross_pt[0]; |
| 854 | result[1] = pt[1] + w_cross_pt[1]; |
| 855 | result[2] = pt[2] + w_cross_pt[2]; |
| 856 | } |
| 857 | } |
| 858 | |
| 859 | } // namespace ceres |
| 860 | |
| 861 | #endif // CERES_PUBLIC_ROTATION_H_ |