Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2023 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #include <cmath> |
| 32 | #include <limits> |
| 33 | #include <memory> |
| 34 | |
| 35 | #include "ceres/dynamic_numeric_diff_cost_function.h" |
| 36 | #include "ceres/internal/eigen.h" |
| 37 | #include "ceres/manifold.h" |
| 38 | #include "ceres/numeric_diff_options.h" |
| 39 | #include "ceres/types.h" |
| 40 | #include "gmock/gmock.h" |
| 41 | #include "gtest/gtest.h" |
| 42 | |
| 43 | namespace ceres { |
| 44 | |
| 45 | // Matchers and macros to simplify testing of custom Manifold objects using the |
| 46 | // gtest testing framework. |
| 47 | // |
| 48 | // Testing a Manifold has two parts. |
| 49 | // |
| 50 | // 1. Checking that Manifold::Plus() and Manifold::Minus() are correctly |
| 51 | // defined. This requires per manifold tests. |
| 52 | // |
| 53 | // 2. The other methods of the manifold have mathematical properties that make |
| 54 | // them compatible with Plus() and Minus(), as described in [1]. |
| 55 | // |
| 56 | // To verify these general requirements for a custom Manifold, use the |
| 57 | // EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD() macro from within a gtest test. Note |
| 58 | // that additional domain-specific tests may also be prudent, e.g to verify the |
| 59 | // behaviour of a Quaternion Manifold about pi. |
| 60 | // |
| 61 | // [1] "Integrating Generic Sensor Fusion Algorithms with Sound State |
| 62 | // Representations through Encapsulation of Manifolds", C. Hertzberg, |
| 63 | // R. Wagner, U. Frese and L. Schroder, https://arxiv.org/pdf/1107.1119.pdf |
| 64 | |
| 65 | // Verifies the general requirements for a custom Manifold are satisfied to |
| 66 | // within the specified (numerical) tolerance. |
| 67 | // |
| 68 | // Example usage for a custom Manifold: ExampleManifold: |
| 69 | // |
| 70 | // TEST(ExampleManifold, ManifoldInvariantsHold) { |
| 71 | // constexpr double kTolerance = 1.0e-9; |
| 72 | // ExampleManifold manifold; |
| 73 | // ceres::Vector x = ceres::Vector::Zero(manifold.AmbientSize()); |
| 74 | // ceres::Vector y = ceres::Vector::Zero(manifold.AmbientSize()); |
| 75 | // ceres::Vector delta = ceres::Vector::Zero(manifold.TangentSize()); |
| 76 | // EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); |
| 77 | // } |
| 78 | #define EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, tolerance) \ |
| 79 | ::ceres::Vector zero_tangent = \ |
| 80 | ::ceres::Vector::Zero(manifold.TangentSize()); \ |
| 81 | EXPECT_THAT(manifold, ::ceres::XPlusZeroIsXAt(x, tolerance)); \ |
| 82 | EXPECT_THAT(manifold, ::ceres::XMinusXIsZeroAt(x, tolerance)); \ |
| 83 | EXPECT_THAT(manifold, ::ceres::MinusPlusIsIdentityAt(x, delta, tolerance)); \ |
| 84 | EXPECT_THAT(manifold, \ |
| 85 | ::ceres::MinusPlusIsIdentityAt(x, zero_tangent, tolerance)); \ |
| 86 | EXPECT_THAT(manifold, ::ceres::PlusMinusIsIdentityAt(x, x, tolerance)); \ |
| 87 | EXPECT_THAT(manifold, ::ceres::PlusMinusIsIdentityAt(x, y, tolerance)); \ |
| 88 | EXPECT_THAT(manifold, ::ceres::HasCorrectPlusJacobianAt(x, tolerance)); \ |
| 89 | EXPECT_THAT(manifold, ::ceres::HasCorrectMinusJacobianAt(x, tolerance)); \ |
| 90 | EXPECT_THAT(manifold, ::ceres::MinusPlusJacobianIsIdentityAt(x, tolerance)); \ |
| 91 | EXPECT_THAT(manifold, \ |
| 92 | ::ceres::HasCorrectRightMultiplyByPlusJacobianAt(x, tolerance)); |
| 93 | |
| 94 | // Checks that the invariant Plus(x, 0) == x holds. |
| 95 | MATCHER_P2(XPlusZeroIsXAt, x, tolerance, "") { |
| 96 | const int ambient_size = arg.AmbientSize(); |
| 97 | const int tangent_size = arg.TangentSize(); |
| 98 | |
| 99 | Vector actual = Vector::Zero(ambient_size); |
| 100 | Vector zero = Vector::Zero(tangent_size); |
| 101 | EXPECT_TRUE(arg.Plus(x.data(), zero.data(), actual.data())); |
| 102 | const double n = (actual - Vector{x}).norm(); |
| 103 | const double d = x.norm(); |
| 104 | const double diffnorm = (d == 0.0) ? n : (n / d); |
| 105 | if (diffnorm > tolerance) { |
| 106 | *result_listener << "\nexpected (x): " << x.transpose() |
| 107 | << "\nactual: " << actual.transpose() |
| 108 | << "\ndiffnorm: " << diffnorm; |
| 109 | return false; |
| 110 | } |
| 111 | return true; |
| 112 | } |
| 113 | |
| 114 | // Checks that the invariant Minus(x, x) == 0 holds. |
| 115 | MATCHER_P2(XMinusXIsZeroAt, x, tolerance, "") { |
| 116 | const int tangent_size = arg.TangentSize(); |
| 117 | Vector actual = Vector::Zero(tangent_size); |
| 118 | EXPECT_TRUE(arg.Minus(x.data(), x.data(), actual.data())); |
| 119 | const double diffnorm = actual.norm(); |
| 120 | if (diffnorm > tolerance) { |
| 121 | *result_listener << "\nx: " << x.transpose() // |
| 122 | << "\nexpected: 0 0 0" |
| 123 | << "\nactual: " << actual.transpose() |
| 124 | << "\ndiffnorm: " << diffnorm; |
| 125 | return false; |
| 126 | } |
| 127 | return true; |
| 128 | } |
| 129 | |
| 130 | // Helper struct to curry Plus(x, .) so that it can be numerically |
| 131 | // differentiated. |
| 132 | struct PlusFunctor { |
| 133 | PlusFunctor(const Manifold& manifold, const double* x) |
| 134 | : manifold(manifold), x(x) {} |
| 135 | bool operator()(double const* const* parameters, double* x_plus_delta) const { |
| 136 | return manifold.Plus(x, parameters[0], x_plus_delta); |
| 137 | } |
| 138 | |
| 139 | const Manifold& manifold; |
| 140 | const double* x; |
| 141 | }; |
| 142 | |
| 143 | // Checks that the output of PlusJacobian matches the one obtained by |
| 144 | // numerically evaluating D_2 Plus(x,0). |
| 145 | MATCHER_P2(HasCorrectPlusJacobianAt, x, tolerance, "") { |
| 146 | const int ambient_size = arg.AmbientSize(); |
| 147 | const int tangent_size = arg.TangentSize(); |
| 148 | |
| 149 | NumericDiffOptions options; |
| 150 | options.ridders_relative_initial_step_size = 1e-4; |
| 151 | |
| 152 | DynamicNumericDiffCostFunction<PlusFunctor, RIDDERS> cost_function( |
| 153 | new PlusFunctor(arg, x.data()), TAKE_OWNERSHIP, options); |
| 154 | cost_function.AddParameterBlock(tangent_size); |
| 155 | cost_function.SetNumResiduals(ambient_size); |
| 156 | |
| 157 | Vector zero = Vector::Zero(tangent_size); |
| 158 | double* parameters[1] = {zero.data()}; |
| 159 | |
| 160 | Vector x_plus_zero = Vector::Zero(ambient_size); |
| 161 | Matrix expected = Matrix::Zero(ambient_size, tangent_size); |
| 162 | double* jacobians[1] = {expected.data()}; |
| 163 | |
| 164 | EXPECT_TRUE( |
| 165 | cost_function.Evaluate(parameters, x_plus_zero.data(), jacobians)); |
| 166 | |
| 167 | Matrix actual = Matrix::Random(ambient_size, tangent_size); |
| 168 | EXPECT_TRUE(arg.PlusJacobian(x.data(), actual.data())); |
| 169 | |
| 170 | const double n = (actual - expected).norm(); |
| 171 | const double d = expected.norm(); |
| 172 | const double diffnorm = (d == 0.0) ? n : n / d; |
| 173 | if (diffnorm > tolerance) { |
| 174 | *result_listener << "\nx: " << x.transpose() << "\nexpected: \n" |
| 175 | << expected << "\nactual:\n" |
| 176 | << actual << "\ndiff:\n" |
| 177 | << expected - actual << "\ndiffnorm : " << diffnorm; |
| 178 | return false; |
| 179 | } |
| 180 | return true; |
| 181 | } |
| 182 | |
| 183 | // Checks that the invariant Minus(Plus(x, delta), x) == delta holds. |
| 184 | MATCHER_P3(MinusPlusIsIdentityAt, x, delta, tolerance, "") { |
| 185 | const int ambient_size = arg.AmbientSize(); |
| 186 | const int tangent_size = arg.TangentSize(); |
| 187 | Vector x_plus_delta = Vector::Zero(ambient_size); |
| 188 | EXPECT_TRUE(arg.Plus(x.data(), delta.data(), x_plus_delta.data())); |
| 189 | Vector actual = Vector::Zero(tangent_size); |
| 190 | EXPECT_TRUE(arg.Minus(x_plus_delta.data(), x.data(), actual.data())); |
| 191 | |
| 192 | const double n = (actual - Vector{delta}).norm(); |
| 193 | const double d = delta.norm(); |
| 194 | const double diffnorm = (d == 0.0) ? n : (n / d); |
| 195 | if (diffnorm > tolerance) { |
| 196 | *result_listener << "\nx: " << x.transpose() |
| 197 | << "\nexpected: " << delta.transpose() |
| 198 | << "\nactual:" << actual.transpose() |
| 199 | << "\ndiff:" << (delta - actual).transpose() |
| 200 | << "\ndiffnorm: " << diffnorm; |
| 201 | return false; |
| 202 | } |
| 203 | return true; |
| 204 | } |
| 205 | |
| 206 | // Checks that the invariant Plus(Minus(y, x), x) == y holds. |
| 207 | MATCHER_P3(PlusMinusIsIdentityAt, x, y, tolerance, "") { |
| 208 | const int ambient_size = arg.AmbientSize(); |
| 209 | const int tangent_size = arg.TangentSize(); |
| 210 | |
| 211 | Vector y_minus_x = Vector::Zero(tangent_size); |
| 212 | EXPECT_TRUE(arg.Minus(y.data(), x.data(), y_minus_x.data())); |
| 213 | |
| 214 | Vector actual = Vector::Zero(ambient_size); |
| 215 | EXPECT_TRUE(arg.Plus(x.data(), y_minus_x.data(), actual.data())); |
| 216 | |
| 217 | const double n = (actual - Vector{y}).norm(); |
| 218 | const double d = y.norm(); |
| 219 | const double diffnorm = (d == 0.0) ? n : (n / d); |
| 220 | if (diffnorm > tolerance) { |
| 221 | *result_listener << "\nx: " << x.transpose() |
| 222 | << "\nexpected: " << y.transpose() |
| 223 | << "\nactual:" << actual.transpose() |
| 224 | << "\ndiff:" << (y - actual).transpose() |
| 225 | << "\ndiffnorm: " << diffnorm; |
| 226 | return false; |
| 227 | } |
| 228 | return true; |
| 229 | } |
| 230 | |
| 231 | // Helper struct to curry Minus(., x) so that it can be numerically |
| 232 | // differentiated. |
| 233 | struct MinusFunctor { |
| 234 | MinusFunctor(const Manifold& manifold, const double* x) |
| 235 | : manifold(manifold), x(x) {} |
| 236 | bool operator()(double const* const* parameters, double* y_minus_x) const { |
| 237 | return manifold.Minus(parameters[0], x, y_minus_x); |
| 238 | } |
| 239 | |
| 240 | const Manifold& manifold; |
| 241 | const double* x; |
| 242 | }; |
| 243 | |
| 244 | // Checks that the output of MinusJacobian matches the one obtained by |
| 245 | // numerically evaluating D_1 Minus(x,x). |
| 246 | MATCHER_P2(HasCorrectMinusJacobianAt, x, tolerance, "") { |
| 247 | const int ambient_size = arg.AmbientSize(); |
| 248 | const int tangent_size = arg.TangentSize(); |
| 249 | |
| 250 | Vector y = x; |
| 251 | Vector y_minus_x = Vector::Zero(tangent_size); |
| 252 | |
| 253 | NumericDiffOptions options; |
| 254 | options.ridders_relative_initial_step_size = 1e-4; |
| 255 | DynamicNumericDiffCostFunction<MinusFunctor, RIDDERS> cost_function( |
| 256 | new MinusFunctor(arg, x.data()), TAKE_OWNERSHIP, options); |
| 257 | cost_function.AddParameterBlock(ambient_size); |
| 258 | cost_function.SetNumResiduals(tangent_size); |
| 259 | |
| 260 | double* parameters[1] = {y.data()}; |
| 261 | |
| 262 | Matrix expected = Matrix::Zero(tangent_size, ambient_size); |
| 263 | double* jacobians[1] = {expected.data()}; |
| 264 | |
| 265 | EXPECT_TRUE(cost_function.Evaluate(parameters, y_minus_x.data(), jacobians)); |
| 266 | |
| 267 | Matrix actual = Matrix::Random(tangent_size, ambient_size); |
| 268 | EXPECT_TRUE(arg.MinusJacobian(x.data(), actual.data())); |
| 269 | |
| 270 | const double n = (actual - expected).norm(); |
| 271 | const double d = expected.norm(); |
| 272 | const double diffnorm = (d == 0.0) ? n : (n / d); |
| 273 | if (diffnorm > tolerance) { |
| 274 | *result_listener << "\nx: " << x.transpose() << "\nexpected: \n" |
| 275 | << expected << "\nactual:\n" |
| 276 | << actual << "\ndiff:\n" |
| 277 | << expected - actual << "\ndiffnorm: " << diffnorm; |
| 278 | return false; |
| 279 | } |
| 280 | return true; |
| 281 | } |
| 282 | |
| 283 | // Checks that D_delta Minus(Plus(x, delta), x) at delta = 0 is an identity |
| 284 | // matrix. |
| 285 | MATCHER_P2(MinusPlusJacobianIsIdentityAt, x, tolerance, "") { |
| 286 | const int ambient_size = arg.AmbientSize(); |
| 287 | const int tangent_size = arg.TangentSize(); |
| 288 | |
| 289 | Matrix plus_jacobian(ambient_size, tangent_size); |
| 290 | EXPECT_TRUE(arg.PlusJacobian(x.data(), plus_jacobian.data())); |
| 291 | Matrix minus_jacobian(tangent_size, ambient_size); |
| 292 | EXPECT_TRUE(arg.MinusJacobian(x.data(), minus_jacobian.data())); |
| 293 | |
| 294 | const Matrix actual = minus_jacobian * plus_jacobian; |
| 295 | const Matrix expected = Matrix::Identity(tangent_size, tangent_size); |
| 296 | |
| 297 | const double n = (actual - expected).norm(); |
| 298 | const double d = expected.norm(); |
| 299 | const double diffnorm = n / d; |
| 300 | if (diffnorm > tolerance) { |
| 301 | *result_listener << "\nx: " << x.transpose() << "\nexpected: \n" |
| 302 | << expected << "\nactual:\n" |
| 303 | << actual << "\ndiff:\n" |
| 304 | << expected - actual << "\ndiffnorm: " << diffnorm; |
| 305 | |
| 306 | return false; |
| 307 | } |
| 308 | return true; |
| 309 | } |
| 310 | |
| 311 | // Verify that the output of RightMultiplyByPlusJacobian is ambient_matrix * |
| 312 | // plus_jacobian. |
| 313 | MATCHER_P2(HasCorrectRightMultiplyByPlusJacobianAt, x, tolerance, "") { |
| 314 | const int ambient_size = arg.AmbientSize(); |
| 315 | const int tangent_size = arg.TangentSize(); |
| 316 | |
| 317 | constexpr int kMinNumRows = 0; |
| 318 | constexpr int kMaxNumRows = 3; |
| 319 | for (int num_rows = kMinNumRows; num_rows <= kMaxNumRows; ++num_rows) { |
| 320 | Matrix plus_jacobian = Matrix::Random(ambient_size, tangent_size); |
| 321 | EXPECT_TRUE(arg.PlusJacobian(x.data(), plus_jacobian.data())); |
| 322 | |
| 323 | Matrix ambient_matrix = Matrix::Random(num_rows, ambient_size); |
| 324 | Matrix expected = ambient_matrix * plus_jacobian; |
| 325 | |
| 326 | Matrix actual = Matrix::Random(num_rows, tangent_size); |
| 327 | EXPECT_TRUE(arg.RightMultiplyByPlusJacobian( |
| 328 | x.data(), num_rows, ambient_matrix.data(), actual.data())); |
| 329 | const double n = (actual - expected).norm(); |
| 330 | const double d = expected.norm(); |
| 331 | const double diffnorm = (d == 0.0) ? n : (n / d); |
| 332 | if (diffnorm > tolerance) { |
| 333 | *result_listener << "\nx: " << x.transpose() << "\nambient_matrix : \n" |
| 334 | << ambient_matrix << "\nplus_jacobian : \n" |
| 335 | << plus_jacobian << "\nexpected: \n" |
| 336 | << expected << "\nactual:\n" |
| 337 | << actual << "\ndiff:\n" |
| 338 | << expected - actual << "\ndiffnorm : " << diffnorm; |
| 339 | return false; |
| 340 | } |
| 341 | } |
| 342 | return true; |
| 343 | } |
| 344 | |
| 345 | } // namespace ceres |