blob: 65e49eb611f0a322629ac7be79f46b543cc625e8 [file] [log] [blame]
Austin Schuh3de38b02024-06-25 18:25:10 -07001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2023 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30//
31// Example of minimizing the Rosenbrock function
32// (https://en.wikipedia.org/wiki/Rosenbrock_function) using
33// GradientProblemSolver using analytic derivatives.
34
35#include "ceres/ceres.h"
36#include "glog/logging.h"
37
38// f(x,y) = (1-x)^2 + 100(y - x^2)^2;
39class Rosenbrock final : public ceres::FirstOrderFunction {
40 public:
41 bool Evaluate(const double* parameters,
42 double* cost,
43 double* gradient) const override {
44 const double x = parameters[0];
45 const double y = parameters[1];
46
47 cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x);
48
49 if (gradient) {
50 gradient[0] = -2.0 * (1.0 - x) - 200.0 * (y - x * x) * 2.0 * x;
51 gradient[1] = 200.0 * (y - x * x);
52 }
53
54 return true;
55 }
56
57 int NumParameters() const override { return 2; }
58};
59
60int main(int argc, char** argv) {
61 google::InitGoogleLogging(argv[0]);
62
63 double parameters[2] = {-1.2, 1.0};
64
65 ceres::GradientProblemSolver::Options options;
66 options.minimizer_progress_to_stdout = true;
67
68 ceres::GradientProblemSolver::Summary summary;
69 ceres::GradientProblem problem(new Rosenbrock());
70 ceres::Solve(options, problem, parameters, &summary);
71
72 std::cout << summary.FullReport() << "\n";
73 std::cout << "Initial x: " << -1.2 << " y: " << 1.0 << "\n";
74 std::cout << "Final x: " << parameters[0] << " y: " << parameters[1]
75 << "\n";
76 return 0;
77}