blob: 4ed9ca6ece4c51db37b972d3648f7328df3cb292 [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
Austin Schuh3de38b02024-06-25 18:25:10 -07002// Copyright 2023 Google Inc. All rights reserved.
Austin Schuh70cc9552019-01-21 19:46:48 -08003// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: keir@google.com (Keir Mierle)
30//
31// Minimize 0.5 (10 - x)^2 using jacobian matrix computed using
32// numeric differentiation.
33
34#include "ceres/ceres.h"
35#include "glog/logging.h"
36
Austin Schuh70cc9552019-01-21 19:46:48 -080037// A cost functor that implements the residual r = 10 - x.
38struct CostFunctor {
39 bool operator()(const double* const x, double* residual) const {
40 residual[0] = 10.0 - x[0];
41 return true;
42 }
43};
44
45int main(int argc, char** argv) {
46 google::InitGoogleLogging(argv[0]);
47
48 // The variable to solve for with its initial value. It will be
49 // mutated in place by the solver.
50 double x = 0.5;
51 const double initial_x = x;
52
53 // Build the problem.
Austin Schuh3de38b02024-06-25 18:25:10 -070054 ceres::Problem problem;
Austin Schuh70cc9552019-01-21 19:46:48 -080055
56 // Set up the only cost function (also known as residual). This uses
57 // numeric differentiation to obtain the derivative (jacobian).
Austin Schuh3de38b02024-06-25 18:25:10 -070058 ceres::CostFunction* cost_function =
59 new ceres::NumericDiffCostFunction<CostFunctor, ceres::CENTRAL, 1, 1>(
60 new CostFunctor);
61 problem.AddResidualBlock(cost_function, nullptr, &x);
Austin Schuh70cc9552019-01-21 19:46:48 -080062
63 // Run the solver!
Austin Schuh3de38b02024-06-25 18:25:10 -070064 ceres::Solver::Options options;
Austin Schuh70cc9552019-01-21 19:46:48 -080065 options.minimizer_progress_to_stdout = true;
Austin Schuh3de38b02024-06-25 18:25:10 -070066 ceres::Solver::Summary summary;
67 ceres::Solve(options, &problem, &summary);
Austin Schuh70cc9552019-01-21 19:46:48 -080068
69 std::cout << summary.BriefReport() << "\n";
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080070 std::cout << "x : " << initial_x << " -> " << x << "\n";
Austin Schuh70cc9552019-01-21 19:46:48 -080071 return 0;
72}