blob: ba3bc87c006888de18c28e4b50701d4ade1a2ce1 [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001.. _sec-bibliography:
2
3============
4Bibliography
5============
6
Austin Schuh3de38b02024-06-25 18:25:10 -07007Background Reading
8==================
9
10For a short but informative introduction to the subject we recommend
11the booklet by [Madsen]_ . For a general introduction to non-linear
12optimization we recommend [NocedalWright]_. [Bjorck]_ remains the
13seminal reference on least squares problems. [TrefethenBau]_ is our
14favorite text on introductory numerical linear algebra. [Triggs]_
15provides a thorough coverage of the bundle adjustment problem.
16
17
18References
19==========
20
Austin Schuh70cc9552019-01-21 19:46:48 -080021.. [Agarwal] S. Agarwal, N. Snavely, S. M. Seitz and R. Szeliski,
22 **Bundle Adjustment in the Large**, *Proceedings of the European
23 Conference on Computer Vision*, pp. 29--42, 2010.
24
25.. [Bjorck] A. Bjorck, **Numerical Methods for Least Squares
26 Problems**, SIAM, 1996
27
28.. [Brown] D. C. Brown, **A solution to the general problem of
29 multiple station analytical stereo triangulation**, Technical
30 Report 43, Patrick Airforce Base, Florida, 1958.
31
32.. [ByrdNocedal] R. H. Byrd, J. Nocedal, R. B. Schanbel,
33 **Representations of Quasi-Newton Matrices and their use in Limited
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080034 Memory Methods**, *Mathematical Programming* 63(4):129-156, 1994.
Austin Schuh70cc9552019-01-21 19:46:48 -080035
36.. [ByrdSchnabel] R.H. Byrd, R.B. Schnabel, and G.A. Shultz, **Approximate
37 solution of the trust region problem by minimization over
38 two dimensional subspaces**, *Mathematical programming*,
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080039 40(1):247-263, 1988.
Austin Schuh70cc9552019-01-21 19:46:48 -080040
41.. [Chen] Y. Chen, T. A. Davis, W. W. Hager, and
42 S. Rajamanickam, **Algorithm 887: CHOLMOD, Supernodal Sparse
43 Cholesky Factorization and Update/Downdate**, *TOMS*, 35(3), 2008.
44
45.. [Conn] A.R. Conn, N.I.M. Gould, and P.L. Toint, **Trust region
46 methods**, *Society for Industrial Mathematics*, 2000.
47
Austin Schuh3de38b02024-06-25 18:25:10 -070048.. [Davis] Timothy A. Davis, **Direct methods for Sparse Linear
49 Systems**, *SIAM*, 2006.
50
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080051.. [Dellaert] F. Dellaert, J. Carlson, V. Ila, K. Ni and C. E. Thorpe,
52 **Subgraph-preconditioned conjugate gradients for large scale SLAM**,
53 *International Conference on Intelligent Robots and Systems*, 2010.
54
Austin Schuh70cc9552019-01-21 19:46:48 -080055.. [GolubPereyra] G.H. Golub and V. Pereyra, **The differentiation of
56 pseudo-inverses and nonlinear least squares problems whose
57 variables separate**, *SIAM Journal on numerical analysis*,
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080058 10(2):413-432, 1973.
59
60.. [GouldScott] N. Gould and J. Scott, **The State-of-the-Art of
61 Preconditioners for Sparse Linear Least-Squares Problems**,
62 *ACM Trans. Math. Softw.*, 43(4), 2017.
Austin Schuh70cc9552019-01-21 19:46:48 -080063
Austin Schuh3de38b02024-06-25 18:25:10 -070064.. [HartleyZisserman] R.I. Hartley and A. Zisserman, **Multiview
Austin Schuh70cc9552019-01-21 19:46:48 -080065 Geometry in Computer Vision**, Cambridge University Press, 2004.
66
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080067.. [Hertzberg] C. Hertzberg, R. Wagner, U. Frese and L. Schroder,
68 **Integrating Generic Sensor Fusion Algorithms with Sound State
69 Representations through Encapsulation of Manifolds**, *Information
70 Fusion*, 14(1):57-77, 2013.
71
Austin Schuh70cc9552019-01-21 19:46:48 -080072.. [KanataniMorris] K. Kanatani and D. D. Morris, **Gauges and gauge
73 transformations for uncertainty description of geometric structure
74 with indeterminacy**, *IEEE Transactions on Information Theory*
75 47(5):2017-2028, 2001.
76
77.. [Keys] R. G. Keys, **Cubic convolution interpolation for digital
78 image processing**, *IEEE Trans. on Acoustics, Speech, and Signal
79 Processing*, 29(6), 1981.
80
81.. [KushalAgarwal] A. Kushal and S. Agarwal, **Visibility based
82 preconditioning for bundle adjustment**, *In Proceedings of the
83 IEEE Conference on Computer Vision and Pattern Recognition*, 2012.
84
85.. [Kanzow] C. Kanzow, N. Yamashita and M. Fukushima,
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080086 **Levenberg-Marquardt methods with strong local convergence
Austin Schuh70cc9552019-01-21 19:46:48 -080087 properties for solving nonlinear equations with convex
88 constraints**, *Journal of Computational and Applied Mathematics*,
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080089 177(2):375-397, 2005.
Austin Schuh70cc9552019-01-21 19:46:48 -080090
91.. [Levenberg] K. Levenberg, **A method for the solution of certain
92 nonlinear problems in least squares**, *Quart. Appl. Math*,
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080093 2(2):164-168, 1944.
Austin Schuh70cc9552019-01-21 19:46:48 -080094
95.. [LiSaad] Na Li and Y. Saad, **MIQR: A multilevel incomplete qr
96 preconditioner for large sparse least squares problems**, *SIAM
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080097 Journal on Matrix Analysis and Applications*, 28(2):524-550, 2007.
Austin Schuh70cc9552019-01-21 19:46:48 -080098
Austin Schuh3de38b02024-06-25 18:25:10 -070099.. [LourakisArgyros] M. L. A. Lourakis, A. A. Argyros, **Is
100 Levenberg-Marquardt the most efficient algorithm for implementing
101 bundle adjustment?**, *International Conference on Computer
102 Vision*, 2005.
103
Austin Schuh70cc9552019-01-21 19:46:48 -0800104.. [Madsen] K. Madsen, H.B. Nielsen, and O. Tingleff, **Methods for
105 nonlinear least squares problems**, 2004.
106
107.. [Mandel] J. Mandel, **On block diagonal and Schur complement
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800108 preconditioning**, *Numer. Math.*, 58(1):79-93, 1990.
Austin Schuh70cc9552019-01-21 19:46:48 -0800109
110.. [Marquardt] D.W. Marquardt, **An algorithm for least squares
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800111 estimation of nonlinear parameters**, *J. SIAM*, 11(2):431-441,
Austin Schuh70cc9552019-01-21 19:46:48 -0800112 1963.
113
114.. [Mathew] T.P.A. Mathew, **Domain decomposition methods for the
115 numerical solution of partial differential equations**, Springer
116 Verlag, 2008.
117
118.. [NashSofer] S.G. Nash and A. Sofer, **Assessing a search direction
119 within a truncated newton method**, *Operations Research Letters*,
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800120 9(4):219-221, 1990.
Austin Schuh70cc9552019-01-21 19:46:48 -0800121
122.. [Nocedal] J. Nocedal, **Updating Quasi-Newton Matrices with Limited
123 Storage**, *Mathematics of Computation*, 35(151): 773--782, 1980.
124
Austin Schuh3de38b02024-06-25 18:25:10 -0700125.. [NocedalWright] J. Nocedal and S. Wright, **Numerical Optimization**,
Austin Schuh70cc9552019-01-21 19:46:48 -0800126 Springer, 2004.
127
128.. [Oren] S. S. Oren, **Self-scaling Variable Metric (SSVM) Algorithms
129 Part II: Implementation and Experiments**, Management Science,
130 20(5), 863-874, 1974.
131
132.. [Press] W. H. Press, S. A. Teukolsky, W. T. Vetterling
Austin Schuh3de38b02024-06-25 18:25:10 -0700133 and B. P. Flannery, **Numerical Recipes**, Cambridge University
Austin Schuh70cc9552019-01-21 19:46:48 -0800134 Press, 2007.
135
136.. [Ridders] C. J. F. Ridders, **Accurate computation of F'(x) and
137 F'(x) F"(x)**, Advances in Engineering Software 4(2), 75-76, 1978.
138
139.. [RuheWedin] A. Ruhe and P.Å. Wedin, **Algorithms for separable
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800140 nonlinear least squares problems**, Siam Review, 22(3):318-337,
Austin Schuh70cc9552019-01-21 19:46:48 -0800141 1980.
142
143.. [Saad] Y. Saad, **Iterative methods for sparse linear
144 systems**, SIAM, 2003.
145
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800146.. [Simon] I. Simon, N. Snavely and S. M. Seitz, **Scene Summarization
Austin Schuh3de38b02024-06-25 18:25:10 -0700147 for Online Image Collections**, *International Conference on
148 Computer Vision*, 2007.
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800149
Austin Schuh70cc9552019-01-21 19:46:48 -0800150.. [Stigler] S. M. Stigler, **Gauss and the invention of least
151 squares**, *The Annals of Statistics*, 9(3):465-474, 1981.
152
Austin Schuh3de38b02024-06-25 18:25:10 -0700153.. [TenenbaumDirector] J. Tenenbaum and B. Director, **How Gauss
Austin Schuh70cc9552019-01-21 19:46:48 -0800154 Determined the Orbit of Ceres**.
155
156.. [TrefethenBau] L.N. Trefethen and D. Bau, **Numerical Linear
157 Algebra**, SIAM, 1997.
158
Austin Schuh3de38b02024-06-25 18:25:10 -0700159.. [Triggs] B. Triggs, P. F. Mclauchlan, R. I. Hartley and
Austin Schuh70cc9552019-01-21 19:46:48 -0800160 A. W. Fitzgibbon, **Bundle Adjustment: A Modern Synthesis**,
161 Proceedings of the International Workshop on Vision Algorithms:
162 Theory and Practice, pp. 298-372, 1999.
163
Austin Schuh3de38b02024-06-25 18:25:10 -0700164.. [Weber] S. Weber, N. Demmel, TC Chan, D. Cremers, **Power Bundle
165 Adjustment for Large-Scale 3D Reconstruction**, *IEEE Conference on
166 Computer Vision and Pattern Recognition*, 2023.
167
Austin Schuh70cc9552019-01-21 19:46:48 -0800168.. [Wiberg] T. Wiberg, **Computation of principal components when data
169 are missing**, In Proc. *Second Symp. Computational Statistics*,
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800170 pages 229-236, 1976.
Austin Schuh70cc9552019-01-21 19:46:48 -0800171
Austin Schuh3de38b02024-06-25 18:25:10 -0700172.. [WrightHolt] S. J. Wright and J. N. Holt, **An Inexact Levenberg
173 Marquardt Method for Large Sparse Nonlinear Least Squares**,
174 *Journal of the Australian Mathematical Society Series B*,
175 26(4):387-403, 1985.
176
177.. [Zheng] Q. Zheng, Y. Xi and Y. Saad, **A power Schur Complement
178 low-rank correction preconditioner for general sparse linear
179 systems**, *SIAM Journal on Matrix Analysis and
180 Applications*, 2021.