blob: f01d2069c3614134088f1a57c317aaceb70f5960 [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: strandmark@google.com (Petter Strandmark)
30
Austin Schuh70cc9552019-01-21 19:46:48 -080031#include "ceres/gradient_problem_solver.h"
32
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080033#include "ceres/gradient_problem.h"
Austin Schuh70cc9552019-01-21 19:46:48 -080034#include "gtest/gtest.h"
35
36namespace ceres {
37namespace internal {
38
39// Rosenbrock function; see http://en.wikipedia.org/wiki/Rosenbrock_function .
40class Rosenbrock : public ceres::FirstOrderFunction {
41 public:
42 virtual ~Rosenbrock() {}
43
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080044 bool Evaluate(const double* parameters,
45 double* cost,
46 double* gradient) const final {
Austin Schuh70cc9552019-01-21 19:46:48 -080047 const double x = parameters[0];
48 const double y = parameters[1];
49
50 cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x);
51 if (gradient != NULL) {
52 gradient[0] = -2.0 * (1.0 - x) - 200.0 * (y - x * x) * 2.0 * x;
53 gradient[1] = 200.0 * (y - x * x);
54 }
55 return true;
56 }
57
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080058 int NumParameters() const final { return 2; }
Austin Schuh70cc9552019-01-21 19:46:48 -080059};
60
61TEST(GradientProblemSolver, SolvesRosenbrockWithDefaultOptions) {
62 const double expected_tolerance = 1e-9;
63 double parameters[2] = {-1.2, 0.0};
64
65 ceres::GradientProblemSolver::Options options;
66 ceres::GradientProblemSolver::Summary summary;
67 ceres::GradientProblem problem(new Rosenbrock());
68 ceres::Solve(options, problem, parameters, &summary);
69
70 EXPECT_EQ(CONVERGENCE, summary.termination_type);
71 EXPECT_NEAR(1.0, parameters[0], expected_tolerance);
72 EXPECT_NEAR(1.0, parameters[1], expected_tolerance);
73}
74
75class QuadraticFunction : public ceres::FirstOrderFunction {
76 virtual ~QuadraticFunction() {}
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080077 bool Evaluate(const double* parameters,
78 double* cost,
79 double* gradient) const final {
Austin Schuh70cc9552019-01-21 19:46:48 -080080 const double x = parameters[0];
81 *cost = 0.5 * (5.0 - x) * (5.0 - x);
82 if (gradient != NULL) {
83 gradient[0] = x - 5.0;
84 }
85
86 return true;
87 }
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080088 int NumParameters() const final { return 1; }
Austin Schuh70cc9552019-01-21 19:46:48 -080089};
90
91struct RememberingCallback : public IterationCallback {
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080092 explicit RememberingCallback(double* x) : calls(0), x(x) {}
Austin Schuh70cc9552019-01-21 19:46:48 -080093 virtual ~RememberingCallback() {}
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080094 CallbackReturnType operator()(const IterationSummary& summary) final {
Austin Schuh70cc9552019-01-21 19:46:48 -080095 x_values.push_back(*x);
96 return SOLVER_CONTINUE;
97 }
98 int calls;
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080099 double* x;
Austin Schuh70cc9552019-01-21 19:46:48 -0800100 std::vector<double> x_values;
101};
102
Austin Schuh70cc9552019-01-21 19:46:48 -0800103TEST(Solver, UpdateStateEveryIterationOption) {
104 double x = 50.0;
105 const double original_x = x;
106
107 ceres::GradientProblem problem(new QuadraticFunction);
108 ceres::GradientProblemSolver::Options options;
109 RememberingCallback callback(&x);
110 options.callbacks.push_back(&callback);
111 ceres::GradientProblemSolver::Summary summary;
112
113 int num_iterations;
114
115 // First try: no updating.
116 ceres::Solve(options, problem, &x, &summary);
117 num_iterations = summary.iterations.size() - 1;
118 EXPECT_GT(num_iterations, 1);
119 for (int i = 0; i < callback.x_values.size(); ++i) {
120 EXPECT_EQ(50.0, callback.x_values[i]);
121 }
122
123 // Second try: with updating
124 x = 50.0;
125 options.update_state_every_iteration = true;
126 callback.x_values.clear();
127 ceres::Solve(options, problem, &x, &summary);
128 num_iterations = summary.iterations.size() - 1;
129 EXPECT_GT(num_iterations, 1);
130 EXPECT_EQ(original_x, callback.x_values[0]);
131 EXPECT_NE(original_x, callback.x_values[1]);
132}
133
134} // namespace internal
135} // namespace ceres