blob: 3907d228ca8268d9daff51494c3608fa0e4c4d27 [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30
31#include "ceres/cubic_interpolation.h"
32
33#include <memory>
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080034
Austin Schuh70cc9552019-01-21 19:46:48 -080035#include "ceres/jet.h"
36#include "glog/logging.h"
37#include "gtest/gtest.h"
38
39namespace ceres {
40namespace internal {
41
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080042static constexpr double kTolerance = 1e-12;
Austin Schuh70cc9552019-01-21 19:46:48 -080043
44TEST(Grid1D, OneDataDimension) {
45 int x[] = {1, 2, 3};
46 Grid1D<int, 1> grid(x, 0, 3);
47 for (int i = 0; i < 3; ++i) {
48 double value;
49 grid.GetValue(i, &value);
50 EXPECT_EQ(value, static_cast<double>(i + 1));
51 }
52}
53
54TEST(Grid1D, OneDataDimensionOutOfBounds) {
55 int x[] = {1, 2, 3};
56 Grid1D<int, 1> grid(x, 0, 3);
57 double value;
58 grid.GetValue(-1, &value);
59 EXPECT_EQ(value, x[0]);
60 grid.GetValue(-2, &value);
61 EXPECT_EQ(value, x[0]);
62 grid.GetValue(3, &value);
63 EXPECT_EQ(value, x[2]);
64 grid.GetValue(4, &value);
65 EXPECT_EQ(value, x[2]);
66}
67
68TEST(Grid1D, TwoDataDimensionIntegerDataInterleaved) {
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080069 // clang-format off
Austin Schuh70cc9552019-01-21 19:46:48 -080070 int x[] = {1, 5,
71 2, 6,
72 3, 7};
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080073 // clang-format on
Austin Schuh70cc9552019-01-21 19:46:48 -080074
75 Grid1D<int, 2, true> grid(x, 0, 3);
76 for (int i = 0; i < 3; ++i) {
77 double value[2];
78 grid.GetValue(i, value);
79 EXPECT_EQ(value[0], static_cast<double>(i + 1));
80 EXPECT_EQ(value[1], static_cast<double>(i + 5));
81 }
82}
83
Austin Schuh70cc9552019-01-21 19:46:48 -080084TEST(Grid1D, TwoDataDimensionIntegerDataStacked) {
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080085 // clang-format off
Austin Schuh70cc9552019-01-21 19:46:48 -080086 int x[] = {1, 2, 3,
87 5, 6, 7};
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080088 // clang-format on
Austin Schuh70cc9552019-01-21 19:46:48 -080089
90 Grid1D<int, 2, false> grid(x, 0, 3);
91 for (int i = 0; i < 3; ++i) {
92 double value[2];
93 grid.GetValue(i, value);
94 EXPECT_EQ(value[0], static_cast<double>(i + 1));
95 EXPECT_EQ(value[1], static_cast<double>(i + 5));
96 }
97}
98
99TEST(Grid2D, OneDataDimensionRowMajor) {
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800100 // clang-format off
Austin Schuh70cc9552019-01-21 19:46:48 -0800101 int x[] = {1, 2, 3,
102 2, 3, 4};
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800103 // clang-format on
Austin Schuh70cc9552019-01-21 19:46:48 -0800104 Grid2D<int, 1, true, true> grid(x, 0, 2, 0, 3);
105 for (int r = 0; r < 2; ++r) {
106 for (int c = 0; c < 3; ++c) {
107 double value;
108 grid.GetValue(r, c, &value);
109 EXPECT_EQ(value, static_cast<double>(r + c + 1));
110 }
111 }
112}
113
114TEST(Grid2D, OneDataDimensionRowMajorOutOfBounds) {
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800115 // clang-format off
Austin Schuh70cc9552019-01-21 19:46:48 -0800116 int x[] = {1, 2, 3,
117 2, 3, 4};
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800118 // clang-format on
Austin Schuh70cc9552019-01-21 19:46:48 -0800119 Grid2D<int, 1, true, true> grid(x, 0, 2, 0, 3);
120 double value;
121 grid.GetValue(-1, -1, &value);
122 EXPECT_EQ(value, x[0]);
123 grid.GetValue(-1, 0, &value);
124 EXPECT_EQ(value, x[0]);
125 grid.GetValue(-1, 1, &value);
126 EXPECT_EQ(value, x[1]);
127 grid.GetValue(-1, 2, &value);
128 EXPECT_EQ(value, x[2]);
129 grid.GetValue(-1, 3, &value);
130 EXPECT_EQ(value, x[2]);
131 grid.GetValue(0, 3, &value);
132 EXPECT_EQ(value, x[2]);
133 grid.GetValue(1, 3, &value);
134 EXPECT_EQ(value, x[5]);
135 grid.GetValue(2, 3, &value);
136 EXPECT_EQ(value, x[5]);
137 grid.GetValue(2, 2, &value);
138 EXPECT_EQ(value, x[5]);
139 grid.GetValue(2, 1, &value);
140 EXPECT_EQ(value, x[4]);
141 grid.GetValue(2, 0, &value);
142 EXPECT_EQ(value, x[3]);
143 grid.GetValue(2, -1, &value);
144 EXPECT_EQ(value, x[3]);
145 grid.GetValue(1, -1, &value);
146 EXPECT_EQ(value, x[3]);
147 grid.GetValue(0, -1, &value);
148 EXPECT_EQ(value, x[0]);
149}
150
151TEST(Grid2D, TwoDataDimensionRowMajorInterleaved) {
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800152 // clang-format off
Austin Schuh70cc9552019-01-21 19:46:48 -0800153 int x[] = {1, 4, 2, 8, 3, 12,
154 2, 8, 3, 12, 4, 16};
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800155 // clang-format on
Austin Schuh70cc9552019-01-21 19:46:48 -0800156 Grid2D<int, 2, true, true> grid(x, 0, 2, 0, 3);
157 for (int r = 0; r < 2; ++r) {
158 for (int c = 0; c < 3; ++c) {
159 double value[2];
160 grid.GetValue(r, c, value);
161 EXPECT_EQ(value[0], static_cast<double>(r + c + 1));
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800162 EXPECT_EQ(value[1], static_cast<double>(4 * (r + c + 1)));
Austin Schuh70cc9552019-01-21 19:46:48 -0800163 }
164 }
165}
166
167TEST(Grid2D, TwoDataDimensionRowMajorStacked) {
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800168 // clang-format off
Austin Schuh70cc9552019-01-21 19:46:48 -0800169 int x[] = {1, 2, 3,
170 2, 3, 4,
171 4, 8, 12,
172 8, 12, 16};
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800173 // clang-format on
Austin Schuh70cc9552019-01-21 19:46:48 -0800174 Grid2D<int, 2, true, false> grid(x, 0, 2, 0, 3);
175 for (int r = 0; r < 2; ++r) {
176 for (int c = 0; c < 3; ++c) {
177 double value[2];
178 grid.GetValue(r, c, value);
179 EXPECT_EQ(value[0], static_cast<double>(r + c + 1));
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800180 EXPECT_EQ(value[1], static_cast<double>(4 * (r + c + 1)));
Austin Schuh70cc9552019-01-21 19:46:48 -0800181 }
182 }
183}
184
185TEST(Grid2D, TwoDataDimensionColMajorInterleaved) {
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800186 // clang-format off
Austin Schuh70cc9552019-01-21 19:46:48 -0800187 int x[] = { 1, 4, 2, 8,
188 2, 8, 3, 12,
189 3, 12, 4, 16};
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800190 // clang-format on
Austin Schuh70cc9552019-01-21 19:46:48 -0800191 Grid2D<int, 2, false, true> grid(x, 0, 2, 0, 3);
192 for (int r = 0; r < 2; ++r) {
193 for (int c = 0; c < 3; ++c) {
194 double value[2];
195 grid.GetValue(r, c, value);
196 EXPECT_EQ(value[0], static_cast<double>(r + c + 1));
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800197 EXPECT_EQ(value[1], static_cast<double>(4 * (r + c + 1)));
Austin Schuh70cc9552019-01-21 19:46:48 -0800198 }
199 }
200}
201
202TEST(Grid2D, TwoDataDimensionColMajorStacked) {
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800203 // clang-format off
Austin Schuh70cc9552019-01-21 19:46:48 -0800204 int x[] = {1, 2,
205 2, 3,
206 3, 4,
207 4, 8,
208 8, 12,
209 12, 16};
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800210 // clang-format on
Austin Schuh70cc9552019-01-21 19:46:48 -0800211 Grid2D<int, 2, false, false> grid(x, 0, 2, 0, 3);
212 for (int r = 0; r < 2; ++r) {
213 for (int c = 0; c < 3; ++c) {
214 double value[2];
215 grid.GetValue(r, c, value);
216 EXPECT_EQ(value[0], static_cast<double>(r + c + 1));
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800217 EXPECT_EQ(value[1], static_cast<double>(4 * (r + c + 1)));
Austin Schuh70cc9552019-01-21 19:46:48 -0800218 }
219 }
220}
221
222class CubicInterpolatorTest : public ::testing::Test {
223 public:
224 template <int kDataDimension>
225 void RunPolynomialInterpolationTest(const double a,
226 const double b,
227 const double c,
228 const double d) {
229 values_.reset(new double[kDataDimension * kNumSamples]);
230
231 for (int x = 0; x < kNumSamples; ++x) {
232 for (int dim = 0; dim < kDataDimension; ++dim) {
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800233 values_[x * kDataDimension + dim] =
234 (dim * dim + 1) * (a * x * x * x + b * x * x + c * x + d);
Austin Schuh70cc9552019-01-21 19:46:48 -0800235 }
236 }
237
238 Grid1D<double, kDataDimension> grid(values_.get(), 0, kNumSamples);
239 CubicInterpolator<Grid1D<double, kDataDimension>> interpolator(grid);
240
241 // Check values in the all the cells but the first and the last
242 // ones. In these cells, the interpolated function values should
243 // match exactly the values of the function being interpolated.
244 //
245 // On the boundary, we extrapolate the values of the function on
246 // the basis of its first derivative, so we do not expect the
247 // function values and its derivatives not to match.
248 for (int j = 0; j < kNumTestSamples; ++j) {
249 const double x = 1.0 + 7.0 / (kNumTestSamples - 1) * j;
250 double expected_f[kDataDimension], expected_dfdx[kDataDimension];
251 double f[kDataDimension], dfdx[kDataDimension];
252
253 for (int dim = 0; dim < kDataDimension; ++dim) {
254 expected_f[dim] =
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800255 (dim * dim + 1) * (a * x * x * x + b * x * x + c * x + d);
256 expected_dfdx[dim] =
257 (dim * dim + 1) * (3.0 * a * x * x + 2.0 * b * x + c);
Austin Schuh70cc9552019-01-21 19:46:48 -0800258 }
259
260 interpolator.Evaluate(x, f, dfdx);
261 for (int dim = 0; dim < kDataDimension; ++dim) {
262 EXPECT_NEAR(f[dim], expected_f[dim], kTolerance)
263 << "x: " << x << " dim: " << dim
264 << " actual f(x): " << expected_f[dim]
265 << " estimated f(x): " << f[dim];
266 EXPECT_NEAR(dfdx[dim], expected_dfdx[dim], kTolerance)
267 << "x: " << x << " dim: " << dim
268 << " actual df(x)/dx: " << expected_dfdx[dim]
269 << " estimated df(x)/dx: " << dfdx[dim];
270 }
271 }
272 }
273
274 private:
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800275 static constexpr int kNumSamples = 10;
276 static constexpr int kNumTestSamples = 100;
Austin Schuh70cc9552019-01-21 19:46:48 -0800277 std::unique_ptr<double[]> values_;
278};
279
280TEST_F(CubicInterpolatorTest, ConstantFunction) {
281 RunPolynomialInterpolationTest<1>(0.0, 0.0, 0.0, 0.5);
282 RunPolynomialInterpolationTest<2>(0.0, 0.0, 0.0, 0.5);
283 RunPolynomialInterpolationTest<3>(0.0, 0.0, 0.0, 0.5);
284}
285
286TEST_F(CubicInterpolatorTest, LinearFunction) {
287 RunPolynomialInterpolationTest<1>(0.0, 0.0, 1.0, 0.5);
288 RunPolynomialInterpolationTest<2>(0.0, 0.0, 1.0, 0.5);
289 RunPolynomialInterpolationTest<3>(0.0, 0.0, 1.0, 0.5);
290}
291
292TEST_F(CubicInterpolatorTest, QuadraticFunction) {
293 RunPolynomialInterpolationTest<1>(0.0, 0.4, 1.0, 0.5);
294 RunPolynomialInterpolationTest<2>(0.0, 0.4, 1.0, 0.5);
295 RunPolynomialInterpolationTest<3>(0.0, 0.4, 1.0, 0.5);
296}
297
Austin Schuh70cc9552019-01-21 19:46:48 -0800298TEST(CubicInterpolator, JetEvaluation) {
299 const double values[] = {1.0, 2.0, 2.0, 5.0, 3.0, 9.0, 2.0, 7.0};
300
301 Grid1D<double, 2, true> grid(values, 0, 4);
302 CubicInterpolator<Grid1D<double, 2, true>> interpolator(grid);
303
304 double f[2], dfdx[2];
305 const double x = 2.5;
306 interpolator.Evaluate(x, f, dfdx);
307
308 // Create a Jet with the same scalar part as x, so that the output
309 // Jet will be evaluated at x.
310 Jet<double, 4> x_jet;
311 x_jet.a = x;
312 x_jet.v(0) = 1.0;
313 x_jet.v(1) = 1.1;
314 x_jet.v(2) = 1.2;
315 x_jet.v(3) = 1.3;
316
317 Jet<double, 4> f_jets[2];
318 interpolator.Evaluate(x_jet, f_jets);
319
320 // Check that the scalar part of the Jet is f(x).
321 EXPECT_EQ(f_jets[0].a, f[0]);
322 EXPECT_EQ(f_jets[1].a, f[1]);
323
324 // Check that the derivative part of the Jet is dfdx * x_jet.v
325 // by the chain rule.
326 EXPECT_NEAR((f_jets[0].v - dfdx[0] * x_jet.v).norm(), 0.0, kTolerance);
327 EXPECT_NEAR((f_jets[1].v - dfdx[1] * x_jet.v).norm(), 0.0, kTolerance);
328}
329
330class BiCubicInterpolatorTest : public ::testing::Test {
331 public:
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800332 // This class needs to have an Eigen aligned operator new as it contains
333 // fixed-size Eigen types.
334 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
335
Austin Schuh70cc9552019-01-21 19:46:48 -0800336 template <int kDataDimension>
337 void RunPolynomialInterpolationTest(const Eigen::Matrix3d& coeff) {
338 values_.reset(new double[kNumRows * kNumCols * kDataDimension]);
339 coeff_ = coeff;
340 double* v = values_.get();
341 for (int r = 0; r < kNumRows; ++r) {
342 for (int c = 0; c < kNumCols; ++c) {
343 for (int dim = 0; dim < kDataDimension; ++dim) {
344 *v++ = (dim * dim + 1) * EvaluateF(r, c);
345 }
346 }
347 }
348
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800349 Grid2D<double, kDataDimension> grid(
350 values_.get(), 0, kNumRows, 0, kNumCols);
Austin Schuh70cc9552019-01-21 19:46:48 -0800351 BiCubicInterpolator<Grid2D<double, kDataDimension>> interpolator(grid);
352
353 for (int j = 0; j < kNumRowSamples; ++j) {
354 const double r = 1.0 + 7.0 / (kNumRowSamples - 1) * j;
355 for (int k = 0; k < kNumColSamples; ++k) {
356 const double c = 1.0 + 7.0 / (kNumColSamples - 1) * k;
357 double f[kDataDimension], dfdr[kDataDimension], dfdc[kDataDimension];
358 interpolator.Evaluate(r, c, f, dfdr, dfdc);
359 for (int dim = 0; dim < kDataDimension; ++dim) {
360 EXPECT_NEAR(f[dim], (dim * dim + 1) * EvaluateF(r, c), kTolerance);
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800361 EXPECT_NEAR(
362 dfdr[dim], (dim * dim + 1) * EvaluatedFdr(r, c), kTolerance);
363 EXPECT_NEAR(
364 dfdc[dim], (dim * dim + 1) * EvaluatedFdc(r, c), kTolerance);
Austin Schuh70cc9552019-01-21 19:46:48 -0800365 }
366 }
367 }
368 }
369
370 private:
371 double EvaluateF(double r, double c) {
372 Eigen::Vector3d x;
373 x(0) = r;
374 x(1) = c;
375 x(2) = 1;
376 return x.transpose() * coeff_ * x;
377 }
378
379 double EvaluatedFdr(double r, double c) {
380 Eigen::Vector3d x;
381 x(0) = r;
382 x(1) = c;
383 x(2) = 1;
384 return (coeff_.row(0) + coeff_.col(0).transpose()) * x;
385 }
386
387 double EvaluatedFdc(double r, double c) {
388 Eigen::Vector3d x;
389 x(0) = r;
390 x(1) = c;
391 x(2) = 1;
392 return (coeff_.row(1) + coeff_.col(1).transpose()) * x;
393 }
394
Austin Schuh70cc9552019-01-21 19:46:48 -0800395 Eigen::Matrix3d coeff_;
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800396 static constexpr int kNumRows = 10;
397 static constexpr int kNumCols = 10;
398 static constexpr int kNumRowSamples = 100;
399 static constexpr int kNumColSamples = 100;
Austin Schuh70cc9552019-01-21 19:46:48 -0800400 std::unique_ptr<double[]> values_;
401};
402
403TEST_F(BiCubicInterpolatorTest, ZeroFunction) {
404 Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero();
405 RunPolynomialInterpolationTest<1>(coeff);
406 RunPolynomialInterpolationTest<2>(coeff);
407 RunPolynomialInterpolationTest<3>(coeff);
408}
409
410TEST_F(BiCubicInterpolatorTest, Degree00Function) {
411 Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero();
412 coeff(2, 2) = 1.0;
413 RunPolynomialInterpolationTest<1>(coeff);
414 RunPolynomialInterpolationTest<2>(coeff);
415 RunPolynomialInterpolationTest<3>(coeff);
416}
417
418TEST_F(BiCubicInterpolatorTest, Degree01Function) {
419 Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero();
420 coeff(2, 2) = 1.0;
421 coeff(0, 2) = 0.1;
422 coeff(2, 0) = 0.1;
423 RunPolynomialInterpolationTest<1>(coeff);
424 RunPolynomialInterpolationTest<2>(coeff);
425 RunPolynomialInterpolationTest<3>(coeff);
426}
427
428TEST_F(BiCubicInterpolatorTest, Degree10Function) {
429 Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero();
430 coeff(2, 2) = 1.0;
431 coeff(0, 1) = 0.1;
432 coeff(1, 0) = 0.1;
433 RunPolynomialInterpolationTest<1>(coeff);
434 RunPolynomialInterpolationTest<2>(coeff);
435 RunPolynomialInterpolationTest<3>(coeff);
436}
437
438TEST_F(BiCubicInterpolatorTest, Degree11Function) {
439 Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero();
440 coeff(2, 2) = 1.0;
441 coeff(0, 1) = 0.1;
442 coeff(1, 0) = 0.1;
443 coeff(0, 2) = 0.2;
444 coeff(2, 0) = 0.2;
445 RunPolynomialInterpolationTest<1>(coeff);
446 RunPolynomialInterpolationTest<2>(coeff);
447 RunPolynomialInterpolationTest<3>(coeff);
448}
449
450TEST_F(BiCubicInterpolatorTest, Degree12Function) {
451 Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero();
452 coeff(2, 2) = 1.0;
453 coeff(0, 1) = 0.1;
454 coeff(1, 0) = 0.1;
455 coeff(0, 2) = 0.2;
456 coeff(2, 0) = 0.2;
457 coeff(1, 1) = 0.3;
458 RunPolynomialInterpolationTest<1>(coeff);
459 RunPolynomialInterpolationTest<2>(coeff);
460 RunPolynomialInterpolationTest<3>(coeff);
461}
462
463TEST_F(BiCubicInterpolatorTest, Degree21Function) {
464 Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero();
465 coeff(2, 2) = 1.0;
466 coeff(0, 1) = 0.1;
467 coeff(1, 0) = 0.1;
468 coeff(0, 2) = 0.2;
469 coeff(2, 0) = 0.2;
470 coeff(0, 0) = 0.3;
471 RunPolynomialInterpolationTest<1>(coeff);
472 RunPolynomialInterpolationTest<2>(coeff);
473 RunPolynomialInterpolationTest<3>(coeff);
474}
475
476TEST_F(BiCubicInterpolatorTest, Degree22Function) {
477 Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero();
478 coeff(2, 2) = 1.0;
479 coeff(0, 1) = 0.1;
480 coeff(1, 0) = 0.1;
481 coeff(0, 2) = 0.2;
482 coeff(2, 0) = 0.2;
483 coeff(0, 0) = 0.3;
484 coeff(0, 1) = -0.4;
485 coeff(1, 0) = -0.4;
486 RunPolynomialInterpolationTest<1>(coeff);
487 RunPolynomialInterpolationTest<2>(coeff);
488 RunPolynomialInterpolationTest<3>(coeff);
489}
490
491TEST(BiCubicInterpolator, JetEvaluation) {
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800492 // clang-format off
Austin Schuh70cc9552019-01-21 19:46:48 -0800493 const double values[] = {1.0, 5.0, 2.0, 10.0, 2.0, 6.0, 3.0, 5.0,
494 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0, 1.0};
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800495 // clang-format on
Austin Schuh70cc9552019-01-21 19:46:48 -0800496
497 Grid2D<double, 2> grid(values, 0, 2, 0, 4);
498 BiCubicInterpolator<Grid2D<double, 2>> interpolator(grid);
499
500 double f[2], dfdr[2], dfdc[2];
501 const double r = 0.5;
502 const double c = 2.5;
503 interpolator.Evaluate(r, c, f, dfdr, dfdc);
504
505 // Create a Jet with the same scalar part as x, so that the output
506 // Jet will be evaluated at x.
507 Jet<double, 4> r_jet;
508 r_jet.a = r;
509 r_jet.v(0) = 1.0;
510 r_jet.v(1) = 1.1;
511 r_jet.v(2) = 1.2;
512 r_jet.v(3) = 1.3;
513
514 Jet<double, 4> c_jet;
515 c_jet.a = c;
516 c_jet.v(0) = 2.0;
517 c_jet.v(1) = 3.1;
518 c_jet.v(2) = 4.2;
519 c_jet.v(3) = 5.3;
520
521 Jet<double, 4> f_jets[2];
522 interpolator.Evaluate(r_jet, c_jet, f_jets);
523 EXPECT_EQ(f_jets[0].a, f[0]);
524 EXPECT_EQ(f_jets[1].a, f[1]);
525 EXPECT_NEAR((f_jets[0].v - dfdr[0] * r_jet.v - dfdc[0] * c_jet.v).norm(),
526 0.0,
527 kTolerance);
528 EXPECT_NEAR((f_jets[1].v - dfdr[1] * r_jet.v - dfdc[1] * c_jet.v).norm(),
529 0.0,
530 kTolerance);
531}
532
533} // namespace internal
534} // namespace ceres