blob: d68af22b369faff39f21a9fe5d9aa6df7e93c4fb [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30
31#include "ceres/cubic_interpolation.h"
32
33#include <memory>
34#include "ceres/jet.h"
35#include "glog/logging.h"
36#include "gtest/gtest.h"
37
38namespace ceres {
39namespace internal {
40
41static const double kTolerance = 1e-12;
42
43TEST(Grid1D, OneDataDimension) {
44 int x[] = {1, 2, 3};
45 Grid1D<int, 1> grid(x, 0, 3);
46 for (int i = 0; i < 3; ++i) {
47 double value;
48 grid.GetValue(i, &value);
49 EXPECT_EQ(value, static_cast<double>(i + 1));
50 }
51}
52
53TEST(Grid1D, OneDataDimensionOutOfBounds) {
54 int x[] = {1, 2, 3};
55 Grid1D<int, 1> grid(x, 0, 3);
56 double value;
57 grid.GetValue(-1, &value);
58 EXPECT_EQ(value, x[0]);
59 grid.GetValue(-2, &value);
60 EXPECT_EQ(value, x[0]);
61 grid.GetValue(3, &value);
62 EXPECT_EQ(value, x[2]);
63 grid.GetValue(4, &value);
64 EXPECT_EQ(value, x[2]);
65}
66
67TEST(Grid1D, TwoDataDimensionIntegerDataInterleaved) {
68 int x[] = {1, 5,
69 2, 6,
70 3, 7};
71
72 Grid1D<int, 2, true> grid(x, 0, 3);
73 for (int i = 0; i < 3; ++i) {
74 double value[2];
75 grid.GetValue(i, value);
76 EXPECT_EQ(value[0], static_cast<double>(i + 1));
77 EXPECT_EQ(value[1], static_cast<double>(i + 5));
78 }
79}
80
81
82TEST(Grid1D, TwoDataDimensionIntegerDataStacked) {
83 int x[] = {1, 2, 3,
84 5, 6, 7};
85
86 Grid1D<int, 2, false> grid(x, 0, 3);
87 for (int i = 0; i < 3; ++i) {
88 double value[2];
89 grid.GetValue(i, value);
90 EXPECT_EQ(value[0], static_cast<double>(i + 1));
91 EXPECT_EQ(value[1], static_cast<double>(i + 5));
92 }
93}
94
95TEST(Grid2D, OneDataDimensionRowMajor) {
96 int x[] = {1, 2, 3,
97 2, 3, 4};
98 Grid2D<int, 1, true, true> grid(x, 0, 2, 0, 3);
99 for (int r = 0; r < 2; ++r) {
100 for (int c = 0; c < 3; ++c) {
101 double value;
102 grid.GetValue(r, c, &value);
103 EXPECT_EQ(value, static_cast<double>(r + c + 1));
104 }
105 }
106}
107
108TEST(Grid2D, OneDataDimensionRowMajorOutOfBounds) {
109 int x[] = {1, 2, 3,
110 2, 3, 4};
111 Grid2D<int, 1, true, true> grid(x, 0, 2, 0, 3);
112 double value;
113 grid.GetValue(-1, -1, &value);
114 EXPECT_EQ(value, x[0]);
115 grid.GetValue(-1, 0, &value);
116 EXPECT_EQ(value, x[0]);
117 grid.GetValue(-1, 1, &value);
118 EXPECT_EQ(value, x[1]);
119 grid.GetValue(-1, 2, &value);
120 EXPECT_EQ(value, x[2]);
121 grid.GetValue(-1, 3, &value);
122 EXPECT_EQ(value, x[2]);
123 grid.GetValue(0, 3, &value);
124 EXPECT_EQ(value, x[2]);
125 grid.GetValue(1, 3, &value);
126 EXPECT_EQ(value, x[5]);
127 grid.GetValue(2, 3, &value);
128 EXPECT_EQ(value, x[5]);
129 grid.GetValue(2, 2, &value);
130 EXPECT_EQ(value, x[5]);
131 grid.GetValue(2, 1, &value);
132 EXPECT_EQ(value, x[4]);
133 grid.GetValue(2, 0, &value);
134 EXPECT_EQ(value, x[3]);
135 grid.GetValue(2, -1, &value);
136 EXPECT_EQ(value, x[3]);
137 grid.GetValue(1, -1, &value);
138 EXPECT_EQ(value, x[3]);
139 grid.GetValue(0, -1, &value);
140 EXPECT_EQ(value, x[0]);
141}
142
143TEST(Grid2D, TwoDataDimensionRowMajorInterleaved) {
144 int x[] = {1, 4, 2, 8, 3, 12,
145 2, 8, 3, 12, 4, 16};
146 Grid2D<int, 2, true, true> grid(x, 0, 2, 0, 3);
147 for (int r = 0; r < 2; ++r) {
148 for (int c = 0; c < 3; ++c) {
149 double value[2];
150 grid.GetValue(r, c, value);
151 EXPECT_EQ(value[0], static_cast<double>(r + c + 1));
152 EXPECT_EQ(value[1], static_cast<double>(4 *(r + c + 1)));
153 }
154 }
155}
156
157TEST(Grid2D, TwoDataDimensionRowMajorStacked) {
158 int x[] = {1, 2, 3,
159 2, 3, 4,
160 4, 8, 12,
161 8, 12, 16};
162 Grid2D<int, 2, true, false> grid(x, 0, 2, 0, 3);
163 for (int r = 0; r < 2; ++r) {
164 for (int c = 0; c < 3; ++c) {
165 double value[2];
166 grid.GetValue(r, c, value);
167 EXPECT_EQ(value[0], static_cast<double>(r + c + 1));
168 EXPECT_EQ(value[1], static_cast<double>(4 *(r + c + 1)));
169 }
170 }
171}
172
173TEST(Grid2D, TwoDataDimensionColMajorInterleaved) {
174 int x[] = { 1, 4, 2, 8,
175 2, 8, 3, 12,
176 3, 12, 4, 16};
177 Grid2D<int, 2, false, true> grid(x, 0, 2, 0, 3);
178 for (int r = 0; r < 2; ++r) {
179 for (int c = 0; c < 3; ++c) {
180 double value[2];
181 grid.GetValue(r, c, value);
182 EXPECT_EQ(value[0], static_cast<double>(r + c + 1));
183 EXPECT_EQ(value[1], static_cast<double>(4 *(r + c + 1)));
184 }
185 }
186}
187
188TEST(Grid2D, TwoDataDimensionColMajorStacked) {
189 int x[] = {1, 2,
190 2, 3,
191 3, 4,
192 4, 8,
193 8, 12,
194 12, 16};
195 Grid2D<int, 2, false, false> grid(x, 0, 2, 0, 3);
196 for (int r = 0; r < 2; ++r) {
197 for (int c = 0; c < 3; ++c) {
198 double value[2];
199 grid.GetValue(r, c, value);
200 EXPECT_EQ(value[0], static_cast<double>(r + c + 1));
201 EXPECT_EQ(value[1], static_cast<double>(4 *(r + c + 1)));
202 }
203 }
204}
205
206class CubicInterpolatorTest : public ::testing::Test {
207 public:
208 template <int kDataDimension>
209 void RunPolynomialInterpolationTest(const double a,
210 const double b,
211 const double c,
212 const double d) {
213 values_.reset(new double[kDataDimension * kNumSamples]);
214
215 for (int x = 0; x < kNumSamples; ++x) {
216 for (int dim = 0; dim < kDataDimension; ++dim) {
217 values_[x * kDataDimension + dim] =
218 (dim * dim + 1) * (a * x * x * x + b * x * x + c * x + d);
219 }
220 }
221
222 Grid1D<double, kDataDimension> grid(values_.get(), 0, kNumSamples);
223 CubicInterpolator<Grid1D<double, kDataDimension>> interpolator(grid);
224
225 // Check values in the all the cells but the first and the last
226 // ones. In these cells, the interpolated function values should
227 // match exactly the values of the function being interpolated.
228 //
229 // On the boundary, we extrapolate the values of the function on
230 // the basis of its first derivative, so we do not expect the
231 // function values and its derivatives not to match.
232 for (int j = 0; j < kNumTestSamples; ++j) {
233 const double x = 1.0 + 7.0 / (kNumTestSamples - 1) * j;
234 double expected_f[kDataDimension], expected_dfdx[kDataDimension];
235 double f[kDataDimension], dfdx[kDataDimension];
236
237 for (int dim = 0; dim < kDataDimension; ++dim) {
238 expected_f[dim] =
239 (dim * dim + 1) * (a * x * x * x + b * x * x + c * x + d);
240 expected_dfdx[dim] = (dim * dim + 1) * (3.0 * a * x * x + 2.0 * b * x + c);
241 }
242
243 interpolator.Evaluate(x, f, dfdx);
244 for (int dim = 0; dim < kDataDimension; ++dim) {
245 EXPECT_NEAR(f[dim], expected_f[dim], kTolerance)
246 << "x: " << x << " dim: " << dim
247 << " actual f(x): " << expected_f[dim]
248 << " estimated f(x): " << f[dim];
249 EXPECT_NEAR(dfdx[dim], expected_dfdx[dim], kTolerance)
250 << "x: " << x << " dim: " << dim
251 << " actual df(x)/dx: " << expected_dfdx[dim]
252 << " estimated df(x)/dx: " << dfdx[dim];
253 }
254 }
255 }
256
257 private:
258 static const int kNumSamples = 10;
259 static const int kNumTestSamples = 100;
260 std::unique_ptr<double[]> values_;
261};
262
263TEST_F(CubicInterpolatorTest, ConstantFunction) {
264 RunPolynomialInterpolationTest<1>(0.0, 0.0, 0.0, 0.5);
265 RunPolynomialInterpolationTest<2>(0.0, 0.0, 0.0, 0.5);
266 RunPolynomialInterpolationTest<3>(0.0, 0.0, 0.0, 0.5);
267}
268
269TEST_F(CubicInterpolatorTest, LinearFunction) {
270 RunPolynomialInterpolationTest<1>(0.0, 0.0, 1.0, 0.5);
271 RunPolynomialInterpolationTest<2>(0.0, 0.0, 1.0, 0.5);
272 RunPolynomialInterpolationTest<3>(0.0, 0.0, 1.0, 0.5);
273}
274
275TEST_F(CubicInterpolatorTest, QuadraticFunction) {
276 RunPolynomialInterpolationTest<1>(0.0, 0.4, 1.0, 0.5);
277 RunPolynomialInterpolationTest<2>(0.0, 0.4, 1.0, 0.5);
278 RunPolynomialInterpolationTest<3>(0.0, 0.4, 1.0, 0.5);
279}
280
281
282TEST(CubicInterpolator, JetEvaluation) {
283 const double values[] = {1.0, 2.0, 2.0, 5.0, 3.0, 9.0, 2.0, 7.0};
284
285 Grid1D<double, 2, true> grid(values, 0, 4);
286 CubicInterpolator<Grid1D<double, 2, true>> interpolator(grid);
287
288 double f[2], dfdx[2];
289 const double x = 2.5;
290 interpolator.Evaluate(x, f, dfdx);
291
292 // Create a Jet with the same scalar part as x, so that the output
293 // Jet will be evaluated at x.
294 Jet<double, 4> x_jet;
295 x_jet.a = x;
296 x_jet.v(0) = 1.0;
297 x_jet.v(1) = 1.1;
298 x_jet.v(2) = 1.2;
299 x_jet.v(3) = 1.3;
300
301 Jet<double, 4> f_jets[2];
302 interpolator.Evaluate(x_jet, f_jets);
303
304 // Check that the scalar part of the Jet is f(x).
305 EXPECT_EQ(f_jets[0].a, f[0]);
306 EXPECT_EQ(f_jets[1].a, f[1]);
307
308 // Check that the derivative part of the Jet is dfdx * x_jet.v
309 // by the chain rule.
310 EXPECT_NEAR((f_jets[0].v - dfdx[0] * x_jet.v).norm(), 0.0, kTolerance);
311 EXPECT_NEAR((f_jets[1].v - dfdx[1] * x_jet.v).norm(), 0.0, kTolerance);
312}
313
314class BiCubicInterpolatorTest : public ::testing::Test {
315 public:
316 template <int kDataDimension>
317 void RunPolynomialInterpolationTest(const Eigen::Matrix3d& coeff) {
318 values_.reset(new double[kNumRows * kNumCols * kDataDimension]);
319 coeff_ = coeff;
320 double* v = values_.get();
321 for (int r = 0; r < kNumRows; ++r) {
322 for (int c = 0; c < kNumCols; ++c) {
323 for (int dim = 0; dim < kDataDimension; ++dim) {
324 *v++ = (dim * dim + 1) * EvaluateF(r, c);
325 }
326 }
327 }
328
329 Grid2D<double, kDataDimension> grid(values_.get(), 0, kNumRows, 0, kNumCols);
330 BiCubicInterpolator<Grid2D<double, kDataDimension>> interpolator(grid);
331
332 for (int j = 0; j < kNumRowSamples; ++j) {
333 const double r = 1.0 + 7.0 / (kNumRowSamples - 1) * j;
334 for (int k = 0; k < kNumColSamples; ++k) {
335 const double c = 1.0 + 7.0 / (kNumColSamples - 1) * k;
336 double f[kDataDimension], dfdr[kDataDimension], dfdc[kDataDimension];
337 interpolator.Evaluate(r, c, f, dfdr, dfdc);
338 for (int dim = 0; dim < kDataDimension; ++dim) {
339 EXPECT_NEAR(f[dim], (dim * dim + 1) * EvaluateF(r, c), kTolerance);
340 EXPECT_NEAR(dfdr[dim], (dim * dim + 1) * EvaluatedFdr(r, c), kTolerance);
341 EXPECT_NEAR(dfdc[dim], (dim * dim + 1) * EvaluatedFdc(r, c), kTolerance);
342 }
343 }
344 }
345 }
346
347 private:
348 double EvaluateF(double r, double c) {
349 Eigen::Vector3d x;
350 x(0) = r;
351 x(1) = c;
352 x(2) = 1;
353 return x.transpose() * coeff_ * x;
354 }
355
356 double EvaluatedFdr(double r, double c) {
357 Eigen::Vector3d x;
358 x(0) = r;
359 x(1) = c;
360 x(2) = 1;
361 return (coeff_.row(0) + coeff_.col(0).transpose()) * x;
362 }
363
364 double EvaluatedFdc(double r, double c) {
365 Eigen::Vector3d x;
366 x(0) = r;
367 x(1) = c;
368 x(2) = 1;
369 return (coeff_.row(1) + coeff_.col(1).transpose()) * x;
370 }
371
372
373 Eigen::Matrix3d coeff_;
374 static const int kNumRows = 10;
375 static const int kNumCols = 10;
376 static const int kNumRowSamples = 100;
377 static const int kNumColSamples = 100;
378 std::unique_ptr<double[]> values_;
379};
380
381TEST_F(BiCubicInterpolatorTest, ZeroFunction) {
382 Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero();
383 RunPolynomialInterpolationTest<1>(coeff);
384 RunPolynomialInterpolationTest<2>(coeff);
385 RunPolynomialInterpolationTest<3>(coeff);
386}
387
388TEST_F(BiCubicInterpolatorTest, Degree00Function) {
389 Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero();
390 coeff(2, 2) = 1.0;
391 RunPolynomialInterpolationTest<1>(coeff);
392 RunPolynomialInterpolationTest<2>(coeff);
393 RunPolynomialInterpolationTest<3>(coeff);
394}
395
396TEST_F(BiCubicInterpolatorTest, Degree01Function) {
397 Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero();
398 coeff(2, 2) = 1.0;
399 coeff(0, 2) = 0.1;
400 coeff(2, 0) = 0.1;
401 RunPolynomialInterpolationTest<1>(coeff);
402 RunPolynomialInterpolationTest<2>(coeff);
403 RunPolynomialInterpolationTest<3>(coeff);
404}
405
406TEST_F(BiCubicInterpolatorTest, Degree10Function) {
407 Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero();
408 coeff(2, 2) = 1.0;
409 coeff(0, 1) = 0.1;
410 coeff(1, 0) = 0.1;
411 RunPolynomialInterpolationTest<1>(coeff);
412 RunPolynomialInterpolationTest<2>(coeff);
413 RunPolynomialInterpolationTest<3>(coeff);
414}
415
416TEST_F(BiCubicInterpolatorTest, Degree11Function) {
417 Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero();
418 coeff(2, 2) = 1.0;
419 coeff(0, 1) = 0.1;
420 coeff(1, 0) = 0.1;
421 coeff(0, 2) = 0.2;
422 coeff(2, 0) = 0.2;
423 RunPolynomialInterpolationTest<1>(coeff);
424 RunPolynomialInterpolationTest<2>(coeff);
425 RunPolynomialInterpolationTest<3>(coeff);
426}
427
428TEST_F(BiCubicInterpolatorTest, Degree12Function) {
429 Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero();
430 coeff(2, 2) = 1.0;
431 coeff(0, 1) = 0.1;
432 coeff(1, 0) = 0.1;
433 coeff(0, 2) = 0.2;
434 coeff(2, 0) = 0.2;
435 coeff(1, 1) = 0.3;
436 RunPolynomialInterpolationTest<1>(coeff);
437 RunPolynomialInterpolationTest<2>(coeff);
438 RunPolynomialInterpolationTest<3>(coeff);
439}
440
441TEST_F(BiCubicInterpolatorTest, Degree21Function) {
442 Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero();
443 coeff(2, 2) = 1.0;
444 coeff(0, 1) = 0.1;
445 coeff(1, 0) = 0.1;
446 coeff(0, 2) = 0.2;
447 coeff(2, 0) = 0.2;
448 coeff(0, 0) = 0.3;
449 RunPolynomialInterpolationTest<1>(coeff);
450 RunPolynomialInterpolationTest<2>(coeff);
451 RunPolynomialInterpolationTest<3>(coeff);
452}
453
454TEST_F(BiCubicInterpolatorTest, Degree22Function) {
455 Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero();
456 coeff(2, 2) = 1.0;
457 coeff(0, 1) = 0.1;
458 coeff(1, 0) = 0.1;
459 coeff(0, 2) = 0.2;
460 coeff(2, 0) = 0.2;
461 coeff(0, 0) = 0.3;
462 coeff(0, 1) = -0.4;
463 coeff(1, 0) = -0.4;
464 RunPolynomialInterpolationTest<1>(coeff);
465 RunPolynomialInterpolationTest<2>(coeff);
466 RunPolynomialInterpolationTest<3>(coeff);
467}
468
469TEST(BiCubicInterpolator, JetEvaluation) {
470 const double values[] = {1.0, 5.0, 2.0, 10.0, 2.0, 6.0, 3.0, 5.0,
471 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0, 1.0};
472
473 Grid2D<double, 2> grid(values, 0, 2, 0, 4);
474 BiCubicInterpolator<Grid2D<double, 2>> interpolator(grid);
475
476 double f[2], dfdr[2], dfdc[2];
477 const double r = 0.5;
478 const double c = 2.5;
479 interpolator.Evaluate(r, c, f, dfdr, dfdc);
480
481 // Create a Jet with the same scalar part as x, so that the output
482 // Jet will be evaluated at x.
483 Jet<double, 4> r_jet;
484 r_jet.a = r;
485 r_jet.v(0) = 1.0;
486 r_jet.v(1) = 1.1;
487 r_jet.v(2) = 1.2;
488 r_jet.v(3) = 1.3;
489
490 Jet<double, 4> c_jet;
491 c_jet.a = c;
492 c_jet.v(0) = 2.0;
493 c_jet.v(1) = 3.1;
494 c_jet.v(2) = 4.2;
495 c_jet.v(3) = 5.3;
496
497 Jet<double, 4> f_jets[2];
498 interpolator.Evaluate(r_jet, c_jet, f_jets);
499 EXPECT_EQ(f_jets[0].a, f[0]);
500 EXPECT_EQ(f_jets[1].a, f[1]);
501 EXPECT_NEAR((f_jets[0].v - dfdr[0] * r_jet.v - dfdc[0] * c_jet.v).norm(),
502 0.0,
503 kTolerance);
504 EXPECT_NEAR((f_jets[1].v - dfdr[1] * r_jet.v - dfdc[1] * c_jet.v).norm(),
505 0.0,
506 kTolerance);
507}
508
509} // namespace internal
510} // namespace ceres