Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: David Gallup (dgallup@google.com) |
| 30 | // Sameer Agarwal (sameeragarwal@google.com) |
| 31 | |
| 32 | #include "ceres/canonical_views_clustering.h" |
| 33 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 34 | #include <unordered_map> |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 35 | #include <unordered_set> |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 36 | |
| 37 | #include "ceres/graph.h" |
| 38 | #include "ceres/map_util.h" |
| 39 | #include "glog/logging.h" |
| 40 | |
| 41 | namespace ceres { |
| 42 | namespace internal { |
| 43 | |
| 44 | using std::vector; |
| 45 | |
| 46 | typedef std::unordered_map<int, int> IntMap; |
| 47 | typedef std::unordered_set<int> IntSet; |
| 48 | |
| 49 | class CanonicalViewsClustering { |
| 50 | public: |
| 51 | CanonicalViewsClustering() {} |
| 52 | |
| 53 | // Compute the canonical views clustering of the vertices of the |
| 54 | // graph. centers will contain the vertices that are the identified |
| 55 | // as the canonical views/cluster centers, and membership is a map |
| 56 | // from vertices to cluster_ids. The i^th cluster center corresponds |
| 57 | // to the i^th cluster. It is possible depending on the |
| 58 | // configuration of the clustering algorithm that some of the |
| 59 | // vertices may not be assigned to any cluster. In this case they |
| 60 | // are assigned to a cluster with id = kInvalidClusterId. |
| 61 | void ComputeClustering(const CanonicalViewsClusteringOptions& options, |
| 62 | const WeightedGraph<int>& graph, |
| 63 | vector<int>* centers, |
| 64 | IntMap* membership); |
| 65 | |
| 66 | private: |
| 67 | void FindValidViews(IntSet* valid_views) const; |
| 68 | double ComputeClusteringQualityDifference(const int candidate, |
| 69 | const vector<int>& centers) const; |
| 70 | void UpdateCanonicalViewAssignments(const int canonical_view); |
| 71 | void ComputeClusterMembership(const vector<int>& centers, |
| 72 | IntMap* membership) const; |
| 73 | |
| 74 | CanonicalViewsClusteringOptions options_; |
| 75 | const WeightedGraph<int>* graph_; |
| 76 | // Maps a view to its representative canonical view (its cluster |
| 77 | // center). |
| 78 | IntMap view_to_canonical_view_; |
| 79 | // Maps a view to its similarity to its current cluster center. |
| 80 | std::unordered_map<int, double> view_to_canonical_view_similarity_; |
| 81 | }; |
| 82 | |
| 83 | void ComputeCanonicalViewsClustering( |
| 84 | const CanonicalViewsClusteringOptions& options, |
| 85 | const WeightedGraph<int>& graph, |
| 86 | vector<int>* centers, |
| 87 | IntMap* membership) { |
| 88 | time_t start_time = time(NULL); |
| 89 | CanonicalViewsClustering cv; |
| 90 | cv.ComputeClustering(options, graph, centers, membership); |
| 91 | VLOG(2) << "Canonical views clustering time (secs): " |
| 92 | << time(NULL) - start_time; |
| 93 | } |
| 94 | |
| 95 | // Implementation of CanonicalViewsClustering |
| 96 | void CanonicalViewsClustering::ComputeClustering( |
| 97 | const CanonicalViewsClusteringOptions& options, |
| 98 | const WeightedGraph<int>& graph, |
| 99 | vector<int>* centers, |
| 100 | IntMap* membership) { |
| 101 | options_ = options; |
| 102 | CHECK(centers != nullptr); |
| 103 | CHECK(membership != nullptr); |
| 104 | centers->clear(); |
| 105 | membership->clear(); |
| 106 | graph_ = &graph; |
| 107 | |
| 108 | IntSet valid_views; |
| 109 | FindValidViews(&valid_views); |
| 110 | while (valid_views.size() > 0) { |
| 111 | // Find the next best canonical view. |
| 112 | double best_difference = -std::numeric_limits<double>::max(); |
| 113 | int best_view = 0; |
| 114 | |
| 115 | // TODO(sameeragarwal): Make this loop multi-threaded. |
| 116 | for (const auto& view : valid_views) { |
| 117 | const double difference = |
| 118 | ComputeClusteringQualityDifference(view, *centers); |
| 119 | if (difference > best_difference) { |
| 120 | best_difference = difference; |
| 121 | best_view = view; |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | CHECK_GT(best_difference, -std::numeric_limits<double>::max()); |
| 126 | |
| 127 | // Add canonical view if quality improves, or if minimum is not |
| 128 | // yet met, otherwise break. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 129 | if ((best_difference <= 0) && (centers->size() >= options_.min_views)) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 130 | break; |
| 131 | } |
| 132 | |
| 133 | centers->push_back(best_view); |
| 134 | valid_views.erase(best_view); |
| 135 | UpdateCanonicalViewAssignments(best_view); |
| 136 | } |
| 137 | |
| 138 | ComputeClusterMembership(*centers, membership); |
| 139 | } |
| 140 | |
| 141 | // Return the set of vertices of the graph which have valid vertex |
| 142 | // weights. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 143 | void CanonicalViewsClustering::FindValidViews(IntSet* valid_views) const { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 144 | const IntSet& views = graph_->vertices(); |
| 145 | for (const auto& view : views) { |
| 146 | if (graph_->VertexWeight(view) != WeightedGraph<int>::InvalidWeight()) { |
| 147 | valid_views->insert(view); |
| 148 | } |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | // Computes the difference in the quality score if 'candidate' were |
| 153 | // added to the set of canonical views. |
| 154 | double CanonicalViewsClustering::ComputeClusteringQualityDifference( |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 155 | const int candidate, const vector<int>& centers) const { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 156 | // View score. |
| 157 | double difference = |
| 158 | options_.view_score_weight * graph_->VertexWeight(candidate); |
| 159 | |
| 160 | // Compute how much the quality score changes if the candidate view |
| 161 | // was added to the list of canonical views and its nearest |
| 162 | // neighbors became members of its cluster. |
| 163 | const IntSet& neighbors = graph_->Neighbors(candidate); |
| 164 | for (const auto& neighbor : neighbors) { |
| 165 | const double old_similarity = |
| 166 | FindWithDefault(view_to_canonical_view_similarity_, neighbor, 0.0); |
| 167 | const double new_similarity = graph_->EdgeWeight(neighbor, candidate); |
| 168 | if (new_similarity > old_similarity) { |
| 169 | difference += new_similarity - old_similarity; |
| 170 | } |
| 171 | } |
| 172 | |
| 173 | // Number of views penalty. |
| 174 | difference -= options_.size_penalty_weight; |
| 175 | |
| 176 | // Orthogonality. |
| 177 | for (int i = 0; i < centers.size(); ++i) { |
| 178 | difference -= options_.similarity_penalty_weight * |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 179 | graph_->EdgeWeight(centers[i], candidate); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 180 | } |
| 181 | |
| 182 | return difference; |
| 183 | } |
| 184 | |
| 185 | // Reassign views if they're more similar to the new canonical view. |
| 186 | void CanonicalViewsClustering::UpdateCanonicalViewAssignments( |
| 187 | const int canonical_view) { |
| 188 | const IntSet& neighbors = graph_->Neighbors(canonical_view); |
| 189 | for (const auto& neighbor : neighbors) { |
| 190 | const double old_similarity = |
| 191 | FindWithDefault(view_to_canonical_view_similarity_, neighbor, 0.0); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 192 | const double new_similarity = graph_->EdgeWeight(neighbor, canonical_view); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 193 | if (new_similarity > old_similarity) { |
| 194 | view_to_canonical_view_[neighbor] = canonical_view; |
| 195 | view_to_canonical_view_similarity_[neighbor] = new_similarity; |
| 196 | } |
| 197 | } |
| 198 | } |
| 199 | |
| 200 | // Assign a cluster id to each view. |
| 201 | void CanonicalViewsClustering::ComputeClusterMembership( |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 202 | const vector<int>& centers, IntMap* membership) const { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 203 | CHECK(membership != nullptr); |
| 204 | membership->clear(); |
| 205 | |
| 206 | // The i^th cluster has cluster id i. |
| 207 | IntMap center_to_cluster_id; |
| 208 | for (int i = 0; i < centers.size(); ++i) { |
| 209 | center_to_cluster_id[centers[i]] = i; |
| 210 | } |
| 211 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 212 | static constexpr int kInvalidClusterId = -1; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 213 | |
| 214 | const IntSet& views = graph_->vertices(); |
| 215 | for (const auto& view : views) { |
| 216 | auto it = view_to_canonical_view_.find(view); |
| 217 | int cluster_id = kInvalidClusterId; |
| 218 | if (it != view_to_canonical_view_.end()) { |
| 219 | cluster_id = FindOrDie(center_to_cluster_id, it->second); |
| 220 | } |
| 221 | |
| 222 | InsertOrDie(membership, view, cluster_id); |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | } // namespace internal |
| 227 | } // namespace ceres |