Squashed 'third_party/ceres/' content from commit e51e9b4

Change-Id: I763587619d57e594d3fa158dc3a7fe0b89a1743b
git-subtree-dir: third_party/ceres
git-subtree-split: e51e9b46f6ca88ab8b2266d0e362771db6d98067
diff --git a/internal/ceres/canonical_views_clustering.cc b/internal/ceres/canonical_views_clustering.cc
new file mode 100644
index 0000000..b2fd49f
--- /dev/null
+++ b/internal/ceres/canonical_views_clustering.cc
@@ -0,0 +1,232 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2015 Google Inc. All rights reserved.
+// http://ceres-solver.org/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+//   this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+//   this list of conditions and the following disclaimer in the documentation
+//   and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+//   used to endorse or promote products derived from this software without
+//   specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: David Gallup (dgallup@google.com)
+//         Sameer Agarwal (sameeragarwal@google.com)
+
+#include "ceres/canonical_views_clustering.h"
+
+#include <unordered_set>
+#include <unordered_map>
+
+#include "ceres/graph.h"
+#include "ceres/map_util.h"
+#include "glog/logging.h"
+
+namespace ceres {
+namespace internal {
+
+using std::vector;
+
+typedef std::unordered_map<int, int> IntMap;
+typedef std::unordered_set<int> IntSet;
+
+class CanonicalViewsClustering {
+ public:
+  CanonicalViewsClustering() {}
+
+  // Compute the canonical views clustering of the vertices of the
+  // graph. centers will contain the vertices that are the identified
+  // as the canonical views/cluster centers, and membership is a map
+  // from vertices to cluster_ids. The i^th cluster center corresponds
+  // to the i^th cluster. It is possible depending on the
+  // configuration of the clustering algorithm that some of the
+  // vertices may not be assigned to any cluster. In this case they
+  // are assigned to a cluster with id = kInvalidClusterId.
+  void ComputeClustering(const CanonicalViewsClusteringOptions& options,
+                         const WeightedGraph<int>& graph,
+                         vector<int>* centers,
+                         IntMap* membership);
+
+ private:
+  void FindValidViews(IntSet* valid_views) const;
+  double ComputeClusteringQualityDifference(const int candidate,
+                                            const vector<int>& centers) const;
+  void UpdateCanonicalViewAssignments(const int canonical_view);
+  void ComputeClusterMembership(const vector<int>& centers,
+                                IntMap* membership) const;
+
+  CanonicalViewsClusteringOptions options_;
+  const WeightedGraph<int>* graph_;
+  // Maps a view to its representative canonical view (its cluster
+  // center).
+  IntMap view_to_canonical_view_;
+  // Maps a view to its similarity to its current cluster center.
+  std::unordered_map<int, double> view_to_canonical_view_similarity_;
+};
+
+void ComputeCanonicalViewsClustering(
+    const CanonicalViewsClusteringOptions& options,
+    const WeightedGraph<int>& graph,
+    vector<int>* centers,
+    IntMap* membership) {
+  time_t start_time = time(NULL);
+  CanonicalViewsClustering cv;
+  cv.ComputeClustering(options, graph, centers, membership);
+  VLOG(2) << "Canonical views clustering time (secs): "
+          << time(NULL) - start_time;
+}
+
+// Implementation of CanonicalViewsClustering
+void CanonicalViewsClustering::ComputeClustering(
+    const CanonicalViewsClusteringOptions& options,
+    const WeightedGraph<int>& graph,
+    vector<int>* centers,
+    IntMap* membership) {
+  options_ = options;
+  CHECK(centers != nullptr);
+  CHECK(membership != nullptr);
+  centers->clear();
+  membership->clear();
+  graph_ = &graph;
+
+  IntSet valid_views;
+  FindValidViews(&valid_views);
+  while (valid_views.size() > 0) {
+    // Find the next best canonical view.
+    double best_difference = -std::numeric_limits<double>::max();
+    int best_view = 0;
+
+    // TODO(sameeragarwal): Make this loop multi-threaded.
+    for (const auto& view : valid_views) {
+      const double difference =
+          ComputeClusteringQualityDifference(view, *centers);
+      if (difference > best_difference) {
+        best_difference = difference;
+        best_view = view;
+      }
+    }
+
+    CHECK_GT(best_difference, -std::numeric_limits<double>::max());
+
+    // Add canonical view if quality improves, or if minimum is not
+    // yet met, otherwise break.
+    if ((best_difference <= 0) &&
+        (centers->size() >= options_.min_views)) {
+      break;
+    }
+
+    centers->push_back(best_view);
+    valid_views.erase(best_view);
+    UpdateCanonicalViewAssignments(best_view);
+  }
+
+  ComputeClusterMembership(*centers, membership);
+}
+
+// Return the set of vertices of the graph which have valid vertex
+// weights.
+void CanonicalViewsClustering::FindValidViews(
+    IntSet* valid_views) const {
+  const IntSet& views = graph_->vertices();
+  for (const auto& view : views) {
+    if (graph_->VertexWeight(view) != WeightedGraph<int>::InvalidWeight()) {
+      valid_views->insert(view);
+    }
+  }
+}
+
+// Computes the difference in the quality score if 'candidate' were
+// added to the set of canonical views.
+double CanonicalViewsClustering::ComputeClusteringQualityDifference(
+    const int candidate,
+    const vector<int>& centers) const {
+  // View score.
+  double difference =
+      options_.view_score_weight * graph_->VertexWeight(candidate);
+
+  // Compute how much the quality score changes if the candidate view
+  // was added to the list of canonical views and its nearest
+  // neighbors became members of its cluster.
+  const IntSet& neighbors = graph_->Neighbors(candidate);
+  for (const auto& neighbor : neighbors) {
+    const double old_similarity =
+        FindWithDefault(view_to_canonical_view_similarity_, neighbor, 0.0);
+    const double new_similarity = graph_->EdgeWeight(neighbor, candidate);
+    if (new_similarity > old_similarity) {
+      difference += new_similarity - old_similarity;
+    }
+  }
+
+  // Number of views penalty.
+  difference -= options_.size_penalty_weight;
+
+  // Orthogonality.
+  for (int i = 0; i < centers.size(); ++i) {
+    difference -= options_.similarity_penalty_weight *
+        graph_->EdgeWeight(centers[i], candidate);
+  }
+
+  return difference;
+}
+
+// Reassign views if they're more similar to the new canonical view.
+void CanonicalViewsClustering::UpdateCanonicalViewAssignments(
+    const int canonical_view) {
+  const IntSet& neighbors = graph_->Neighbors(canonical_view);
+  for (const auto& neighbor : neighbors) {
+    const double old_similarity =
+        FindWithDefault(view_to_canonical_view_similarity_, neighbor, 0.0);
+    const double new_similarity =
+        graph_->EdgeWeight(neighbor, canonical_view);
+    if (new_similarity > old_similarity) {
+      view_to_canonical_view_[neighbor] = canonical_view;
+      view_to_canonical_view_similarity_[neighbor] = new_similarity;
+    }
+  }
+}
+
+// Assign a cluster id to each view.
+void CanonicalViewsClustering::ComputeClusterMembership(
+    const vector<int>& centers,
+    IntMap* membership) const {
+  CHECK(membership != nullptr);
+  membership->clear();
+
+  // The i^th cluster has cluster id i.
+  IntMap center_to_cluster_id;
+  for (int i = 0; i < centers.size(); ++i) {
+    center_to_cluster_id[centers[i]] = i;
+  }
+
+  static const int kInvalidClusterId = -1;
+
+  const IntSet& views = graph_->vertices();
+  for (const auto& view : views) {
+    auto it = view_to_canonical_view_.find(view);
+    int cluster_id = kInvalidClusterId;
+    if (it != view_to_canonical_view_.end()) {
+      cluster_id = FindOrDie(center_to_cluster_id, it->second);
+    }
+
+    InsertOrDie(membership, view, cluster_id);
+  }
+}
+
+}  // namespace internal
+}  // namespace ceres