blob: 9d7de758508a67063b9d46e34294bba18a3d9ffc [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
Austin Schuh1d1e6ea2020-12-23 21:56:30 -08002// Copyright 2019 Google Inc. All rights reserved.
Austin Schuh70cc9552019-01-21 19:46:48 -08003// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: keir@google.com (Keir Mierle)
30//
31// Computation of the Jacobian matrix for vector-valued functions of multiple
32// variables, using automatic differentiation based on the implementation of
33// dual numbers in jet.h. Before reading the rest of this file, it is advisable
34// to read jet.h's header comment in detail.
35//
36// The helper wrapper AutoDifferentiate() computes the jacobian of
37// functors with templated operator() taking this form:
38//
39// struct F {
40// template<typename T>
41// bool operator()(const T *x, const T *y, ..., T *z) {
42// // Compute z[] based on x[], y[], ...
43// // return true if computation succeeded, false otherwise.
44// }
45// };
46//
47// All inputs and outputs may be vector-valued.
48//
49// To understand how jets are used to compute the jacobian, a
50// picture may help. Consider a vector-valued function, F, returning 3
51// dimensions and taking a vector-valued parameter of 4 dimensions:
52//
53// y x
54// [ * ] F [ * ]
55// [ * ] <--- [ * ]
56// [ * ] [ * ]
57// [ * ]
58//
59// Similar to the 2-parameter example for f described in jet.h, computing the
60// jacobian dy/dx is done by substituting a suitable jet object for x and all
61// intermediate steps of the computation of F. Since x is has 4 dimensions, use
62// a Jet<double, 4>.
63//
64// Before substituting a jet object for x, the dual components are set
65// appropriately for each dimension of x:
66//
67// y x
68// [ * | * * * * ] f [ * | 1 0 0 0 ] x0
69// [ * | * * * * ] <--- [ * | 0 1 0 0 ] x1
70// [ * | * * * * ] [ * | 0 0 1 0 ] x2
71// ---+--- [ * | 0 0 0 1 ] x3
72// | ^ ^ ^ ^
73// dy/dx | | | +----- infinitesimal for x3
74// | | +------- infinitesimal for x2
75// | +--------- infinitesimal for x1
76// +----------- infinitesimal for x0
77//
78// The reason to set the internal 4x4 submatrix to the identity is that we wish
79// to take the derivative of y separately with respect to each dimension of x.
80// Each column of the 4x4 identity is therefore for a single component of the
81// independent variable x.
82//
83// Then the jacobian of the mapping, dy/dx, is the 3x4 sub-matrix of the
84// extended y vector, indicated in the above diagram.
85//
86// Functors with multiple parameters
87// ---------------------------------
88// In practice, it is often convenient to use a function f of two or more
89// vector-valued parameters, for example, x[3] and z[6]. Unfortunately, the jet
90// framework is designed for a single-parameter vector-valued input. The wrapper
91// in this file addresses this issue adding support for functions with one or
92// more parameter vectors.
93//
94// To support multiple parameters, all the parameter vectors are concatenated
95// into one and treated as a single parameter vector, except that since the
96// functor expects different inputs, we need to construct the jets as if they
97// were part of a single parameter vector. The extended jets are passed
98// separately for each parameter.
99//
100// For example, consider a functor F taking two vector parameters, p[2] and
101// q[3], and producing an output y[4]:
102//
103// struct F {
104// template<typename T>
105// bool operator()(const T *p, const T *q, T *z) {
106// // ...
107// }
108// };
109//
110// In this case, the necessary jet type is Jet<double, 5>. Here is a
111// visualization of the jet objects in this case:
112//
113// Dual components for p ----+
114// |
115// -+-
116// y [ * | 1 0 | 0 0 0 ] --- p[0]
117// [ * | 0 1 | 0 0 0 ] --- p[1]
118// [ * | . . | + + + ] |
119// [ * | . . | + + + ] v
120// [ * | . . | + + + ] <--- F(p, q)
121// [ * | . . | + + + ] ^
122// ^^^ ^^^^^ |
123// dy/dp dy/dq [ * | 0 0 | 1 0 0 ] --- q[0]
124// [ * | 0 0 | 0 1 0 ] --- q[1]
125// [ * | 0 0 | 0 0 1 ] --- q[2]
126// --+--
127// |
128// Dual components for q --------------+
129//
130// where the 4x2 submatrix (marked with ".") and 4x3 submatrix (marked with "+"
131// of y in the above diagram are the derivatives of y with respect to p and q
132// respectively. This is how autodiff works for functors taking multiple vector
133// valued arguments (up to 6).
134//
135// Jacobian NULL pointers
136// ----------------------
137// In general, the functions below will accept NULL pointers for all or some of
138// the Jacobian parameters, meaning that those Jacobians will not be computed.
139
140#ifndef CERES_PUBLIC_INTERNAL_AUTODIFF_H_
141#define CERES_PUBLIC_INTERNAL_AUTODIFF_H_
142
143#include <stddef.h>
144
145#include <array>
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800146#include <utility>
Austin Schuh70cc9552019-01-21 19:46:48 -0800147
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800148#include "ceres/internal/array_selector.h"
Austin Schuh70cc9552019-01-21 19:46:48 -0800149#include "ceres/internal/eigen.h"
150#include "ceres/internal/fixed_array.h"
151#include "ceres/internal/parameter_dims.h"
152#include "ceres/internal/variadic_evaluate.h"
153#include "ceres/jet.h"
154#include "ceres/types.h"
155#include "glog/logging.h"
156
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800157// If the number of parameters exceeds this values, the corresponding jets are
158// placed on the heap. This will reduce performance by a factor of 2-5 on
159// current compilers.
160#ifndef CERES_AUTODIFF_MAX_PARAMETERS_ON_STACK
161#define CERES_AUTODIFF_MAX_PARAMETERS_ON_STACK 50
162#endif
163
164#ifndef CERES_AUTODIFF_MAX_RESIDUALS_ON_STACK
165#define CERES_AUTODIFF_MAX_RESIDUALS_ON_STACK 20
166#endif
167
Austin Schuh70cc9552019-01-21 19:46:48 -0800168namespace ceres {
169namespace internal {
170
171// Extends src by a 1st order perturbation for every dimension and puts it in
172// dst. The size of src is N. Since this is also used for perturbations in
173// blocked arrays, offset is used to shift which part of the jet the
174// perturbation occurs. This is used to set up the extended x augmented by an
175// identity matrix. The JetT type should be a Jet type, and T should be a
176// numeric type (e.g. double). For example,
177//
178// 0 1 2 3 4 5 6 7 8
179// dst[0] [ * | . . | 1 0 0 | . . . ]
180// dst[1] [ * | . . | 0 1 0 | . . . ]
181// dst[2] [ * | . . | 0 0 1 | . . . ]
182//
183// is what would get put in dst if N was 3, offset was 3, and the jet type JetT
184// was 8-dimensional.
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800185template <int j, int N, int Offset, typename T, typename JetT>
186struct Make1stOrderPerturbation {
187 public:
188 inline static void Apply(const T* src, JetT* dst) {
189 if (j == 0) {
190 DCHECK(src);
191 DCHECK(dst);
192 }
193 dst[j] = JetT(src[j], j + Offset);
194 Make1stOrderPerturbation<j + 1, N, Offset, T, JetT>::Apply(src, dst);
Austin Schuh70cc9552019-01-21 19:46:48 -0800195 }
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800196};
197
198template <int N, int Offset, typename T, typename JetT>
199struct Make1stOrderPerturbation<N, N, Offset, T, JetT> {
200 public:
201 static void Apply(const T* src, JetT* dst) {}
202};
Austin Schuh70cc9552019-01-21 19:46:48 -0800203
204// Calls Make1stOrderPerturbation for every parameter block.
205//
206// Example:
207// If one having three parameter blocks with dimensions (3, 2, 4), the call
208// Make1stOrderPerturbations<integer_sequence<3, 2, 4>::Apply(params, x);
209// will result in the following calls to Make1stOrderPerturbation:
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800210// Make1stOrderPerturbation<0, 3, 0>::Apply(params[0], x + 0);
211// Make1stOrderPerturbation<0, 2, 3>::Apply(params[1], x + 3);
212// Make1stOrderPerturbation<0, 4, 5>::Apply(params[2], x + 5);
Austin Schuh70cc9552019-01-21 19:46:48 -0800213template <typename Seq, int ParameterIdx = 0, int Offset = 0>
214struct Make1stOrderPerturbations;
215
216template <int N, int... Ns, int ParameterIdx, int Offset>
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800217struct Make1stOrderPerturbations<std::integer_sequence<int, N, Ns...>,
218 ParameterIdx,
Austin Schuh70cc9552019-01-21 19:46:48 -0800219 Offset> {
220 template <typename T, typename JetT>
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800221 inline static void Apply(T const* const* parameters, JetT* x) {
222 Make1stOrderPerturbation<0, N, Offset, T, JetT>::Apply(
223 parameters[ParameterIdx], x + Offset);
224 Make1stOrderPerturbations<std::integer_sequence<int, Ns...>,
225 ParameterIdx + 1,
Austin Schuh70cc9552019-01-21 19:46:48 -0800226 Offset + N>::Apply(parameters, x);
227 }
228};
229
230// End of 'recursion'. Nothing more to do.
231template <int ParameterIdx, int Total>
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800232struct Make1stOrderPerturbations<std::integer_sequence<int>,
233 ParameterIdx,
234 Total> {
Austin Schuh70cc9552019-01-21 19:46:48 -0800235 template <typename T, typename JetT>
236 static void Apply(T const* const* /* NOT USED */, JetT* /* NOT USED */) {}
237};
238
239// Takes the 0th order part of src, assumed to be a Jet type, and puts it in
240// dst. This is used to pick out the "vector" part of the extended y.
241template <typename JetT, typename T>
242inline void Take0thOrderPart(int M, const JetT* src, T dst) {
243 DCHECK(src);
244 for (int i = 0; i < M; ++i) {
245 dst[i] = src[i].a;
246 }
247}
248
249// Takes N 1st order parts, starting at index N0, and puts them in the M x N
250// matrix 'dst'. This is used to pick out the "matrix" parts of the extended y.
251template <int N0, int N, typename JetT, typename T>
252inline void Take1stOrderPart(const int M, const JetT* src, T* dst) {
253 DCHECK(src);
254 DCHECK(dst);
255 for (int i = 0; i < M; ++i) {
256 Eigen::Map<Eigen::Matrix<T, N, 1>>(dst + N * i, N) =
257 src[i].v.template segment<N>(N0);
258 }
259}
260
261// Calls Take1stOrderPart for every parameter block.
262//
263// Example:
264// If one having three parameter blocks with dimensions (3, 2, 4), the call
265// Take1stOrderParts<integer_sequence<3, 2, 4>::Apply(num_outputs,
266// output,
267// jacobians);
268// will result in the following calls to Take1stOrderPart:
269// if (jacobians[0]) {
270// Take1stOrderPart<0, 3>(num_outputs, output, jacobians[0]);
271// }
272// if (jacobians[1]) {
273// Take1stOrderPart<3, 2>(num_outputs, output, jacobians[1]);
274// }
275// if (jacobians[2]) {
276// Take1stOrderPart<5, 4>(num_outputs, output, jacobians[2]);
277// }
278template <typename Seq, int ParameterIdx = 0, int Offset = 0>
279struct Take1stOrderParts;
280
281template <int N, int... Ns, int ParameterIdx, int Offset>
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800282struct Take1stOrderParts<std::integer_sequence<int, N, Ns...>,
283 ParameterIdx,
Austin Schuh70cc9552019-01-21 19:46:48 -0800284 Offset> {
285 template <typename JetT, typename T>
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800286 inline static void Apply(int num_outputs, JetT* output, T** jacobians) {
Austin Schuh70cc9552019-01-21 19:46:48 -0800287 if (jacobians[ParameterIdx]) {
288 Take1stOrderPart<Offset, N>(num_outputs, output, jacobians[ParameterIdx]);
289 }
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800290 Take1stOrderParts<std::integer_sequence<int, Ns...>,
291 ParameterIdx + 1,
Austin Schuh70cc9552019-01-21 19:46:48 -0800292 Offset + N>::Apply(num_outputs, output, jacobians);
293 }
294};
295
296// End of 'recursion'. Nothing more to do.
297template <int ParameterIdx, int Offset>
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800298struct Take1stOrderParts<std::integer_sequence<int>, ParameterIdx, Offset> {
Austin Schuh70cc9552019-01-21 19:46:48 -0800299 template <typename T, typename JetT>
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800300 static void Apply(int /* NOT USED*/,
301 JetT* /* NOT USED*/,
Austin Schuh70cc9552019-01-21 19:46:48 -0800302 T** /* NOT USED */) {}
303};
304
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800305template <int kNumResiduals,
306 typename ParameterDims,
307 typename Functor,
308 typename T>
Austin Schuh70cc9552019-01-21 19:46:48 -0800309inline bool AutoDifferentiate(const Functor& functor,
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800310 T const* const* parameters,
311 int dynamic_num_outputs,
Austin Schuh70cc9552019-01-21 19:46:48 -0800312 T* function_value,
313 T** jacobians) {
Austin Schuh70cc9552019-01-21 19:46:48 -0800314 typedef Jet<T, ParameterDims::kNumParameters> JetT;
Austin Schuh70cc9552019-01-21 19:46:48 -0800315 using Parameters = typename ParameterDims::Parameters;
316
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800317 if (kNumResiduals != DYNAMIC) {
318 DCHECK_EQ(kNumResiduals, dynamic_num_outputs);
319 }
320
321 ArraySelector<JetT,
322 ParameterDims::kNumParameters,
323 CERES_AUTODIFF_MAX_PARAMETERS_ON_STACK>
324 parameters_as_jets(ParameterDims::kNumParameters);
325
326 // Pointers to the beginning of each parameter block
Austin Schuh70cc9552019-01-21 19:46:48 -0800327 std::array<JetT*, ParameterDims::kNumParameterBlocks> unpacked_parameters =
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800328 ParameterDims::GetUnpackedParameters(parameters_as_jets.data());
329
330 // If the number of residuals is fixed, we use the template argument as the
331 // number of outputs. Otherwise we use the num_outputs parameter. Note: The
332 // ?-operator here is compile-time evaluated, therefore num_outputs is also
333 // a compile-time constant for functors with fixed residuals.
334 const int num_outputs =
335 kNumResiduals == DYNAMIC ? dynamic_num_outputs : kNumResiduals;
336 DCHECK_GT(num_outputs, 0);
337
338 ArraySelector<JetT, kNumResiduals, CERES_AUTODIFF_MAX_RESIDUALS_ON_STACK>
339 residuals_as_jets(num_outputs);
Austin Schuh70cc9552019-01-21 19:46:48 -0800340
341 // Invalidate the output Jets, so that we can detect if the user
342 // did not assign values to all of them.
343 for (int i = 0; i < num_outputs; ++i) {
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800344 residuals_as_jets[i].a = kImpossibleValue;
345 residuals_as_jets[i].v.setConstant(kImpossibleValue);
Austin Schuh70cc9552019-01-21 19:46:48 -0800346 }
347
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800348 Make1stOrderPerturbations<Parameters>::Apply(parameters,
349 parameters_as_jets.data());
Austin Schuh70cc9552019-01-21 19:46:48 -0800350
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800351 if (!VariadicEvaluate<ParameterDims>(
352 functor, unpacked_parameters.data(), residuals_as_jets.data())) {
Austin Schuh70cc9552019-01-21 19:46:48 -0800353 return false;
354 }
355
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800356 Take0thOrderPart(num_outputs, residuals_as_jets.data(), function_value);
357 Take1stOrderParts<Parameters>::Apply(
358 num_outputs, residuals_as_jets.data(), jacobians);
Austin Schuh70cc9552019-01-21 19:46:48 -0800359
360 return true;
361}
362
363} // namespace internal
364} // namespace ceres
365
366#endif // CERES_PUBLIC_INTERNAL_AUTODIFF_H_