blob: 0dad48cb09f54da441ae101830a9759025111715 [file] [log] [blame]
Austin Schuhdace2a62020-08-18 10:56:48 -07001/* mpz_lucas_mod -- Helper function for the strong Lucas
2 primality test.
3
4 THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY. THEY'RE ALMOST
5 CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN
6 FUTURE GNU MP RELEASES.
7
8Copyright 2018 Free Software Foundation, Inc.
9
10Contributed by Marco Bodrato.
11
12This file is part of the GNU MP Library.
13
14The GNU MP Library is free software; you can redistribute it and/or modify
15it under the terms of either:
16
17 * the GNU Lesser General Public License as published by the Free
18 Software Foundation; either version 3 of the License, or (at your
19 option) any later version.
20
21or
22
23 * the GNU General Public License as published by the Free Software
24 Foundation; either version 2 of the License, or (at your option) any
25 later version.
26
27or both in parallel, as here.
28
29The GNU MP Library is distributed in the hope that it will be useful, but
30WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
31or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
32for more details.
33
34You should have received copies of the GNU General Public License and the
35GNU Lesser General Public License along with the GNU MP Library. If not,
36see https://www.gnu.org/licenses/. */
37
38#include "gmp-impl.h"
39
40/* Computes V_{k+1}, Q^{k+1} (mod n) for the Lucas' sequence */
41/* with P=1, Q=Q; k = n>>b0. */
42/* Requires n > 4; b0 > 0; -2*Q must not overflow a long. */
43/* If U_{k+1}==0 (mod n) or V_{k+1}==0 (mod n), it returns 1, */
44/* otherwise it returns 0 and sets V=V_{k+1} and Qk=Q^{k+1}. */
45/* V will never grow beyond SIZ(n), Qk not beyond 2*SIZ(n). */
46int
47mpz_lucas_mod (mpz_ptr V, mpz_ptr Qk, long Q,
48 mp_bitcnt_t b0, mpz_srcptr n, mpz_ptr T1, mpz_ptr T2)
49{
50 mp_bitcnt_t bs;
51 int res;
52
53 ASSERT (b0 > 0);
54 ASSERT (SIZ (n) > 1 || SIZ (n) > 0 && PTR (n) [0] > 4);
55
56 mpz_set_ui (V, 1); /* U1 = 1 */
57 bs = mpz_sizeinbase (n, 2) - 2;
58 if (UNLIKELY (bs < b0))
59 {
60 /* n = 2^b0 - 1, should we use Lucas-Lehmer instead? */
61 ASSERT (bs == b0 - 2);
62 mpz_set_si (Qk, Q);
63 return 0;
64 }
65 mpz_set_ui (Qk, 1); /* U2 = 1 */
66
67 do
68 {
69 /* We use the iteration suggested in "Elementary Number Theory" */
70 /* by Peter Hackman (November 1, 2009), section "L.XVII Scalar */
71 /* Formulas", from http://hackmat.se/kurser/TATM54/booktot.pdf */
72 /* U_{2k} = 2*U_{k+1}*U_k - P*U_k^2 */
73 /* U_{2k+1} = U_{k+1}^2 - Q*U_k^2 */
74 /* U_{2k+2} = P*U_{k+1}^2 - 2*Q*U_{k+1}*U_k */
75 /* We note that U_{2k+2} = P*U_{2k+1} - Q*U_{2k} */
76 /* The formulas are specialized for P=1, and only squares: */
77 /* U_{2k} = U_{k+1}^2 - |U_{k+1} - U_k|^2 */
78 /* U_{2k+1} = U_{k+1}^2 - Q*U_k^2 */
79 /* U_{2k+2} = U_{2k+1} - Q*U_{2k} */
80 mpz_mul (T1, Qk, Qk); /* U_{k+1}^2 */
81 mpz_sub (Qk, V, Qk); /* |U_{k+1} - U_k| */
82 mpz_mul (T2, Qk, Qk); /* |U_{k+1} - U_k|^2 */
83 mpz_mul (Qk, V, V); /* U_k^2 */
84 mpz_sub (T2, T1, T2); /* U_{k+1}^2 - (U_{k+1} - U_k)^2 */
85 if (Q > 0) /* U_{k+1}^2 - Q U_k^2 = U_{2k+1} */
86 mpz_submul_ui (T1, Qk, Q);
87 else
88 mpz_addmul_ui (T1, Qk, NEG_CAST (unsigned long, Q));
89
90 /* A step k->k+1 is performed if the bit in $n$ is 1 */
91 if (mpz_tstbit (n, bs))
92 {
93 /* U_{2k+2} = U_{2k+1} - Q*U_{2k} */
94 mpz_mul_si (T2, T2, Q);
95 mpz_sub (T2, T1, T2);
96 mpz_swap (T1, T2);
97 }
98 mpz_tdiv_r (Qk, T1, n);
99 mpz_tdiv_r (V, T2, n);
100 } while (--bs >= b0);
101
102 res = SIZ (Qk) == 0;
103 if (!res) {
104 mpz_mul_si (T1, V, -2*Q);
105 mpz_add (T1, Qk, T1); /* V_k = U_k - 2Q*U_{k-1} */
106 mpz_tdiv_r (V, T1, n);
107 res = SIZ (V) == 0;
108 if (!res && b0 > 1) {
109 /* V_k and Q^k will be needed for further check, compute them. */
110 /* FIXME: Here we compute V_k^2 and store V_k, but the former */
111 /* will be recomputed by the calling function, shoul we store */
112 /* that instead? */
113 mpz_mul (T2, T1, T1); /* V_k^2 */
114 mpz_mul (T1, Qk, Qk); /* P^2 U_k^2 = U_k^2 */
115 mpz_sub (T2, T2, T1);
116 ASSERT (SIZ (T2) == 0 || PTR (T2) [0] % 4 == 0);
117 mpz_tdiv_q_2exp (T2, T2, 2); /* (V_k^2 - P^2 U_k^2) / 4 */
118 if (Q > 0) /* (V_k^2 - (P^2 -4Q) U_k^2) / 4 = Q^k */
119 mpz_addmul_ui (T2, T1, Q);
120 else
121 mpz_submul_ui (T2, T1, NEG_CAST (unsigned long, Q));
122 mpz_tdiv_r (Qk, T2, n);
123 }
124 }
125
126 return res;
127}