blob: 7b0317dfb5bd152764610bf62b9814e018fa3424 [file] [log] [blame]
brians343bc112013-02-10 01:53:46 +00001#!/usr/bin/python
2
3"""
4Control loop pole placement library.
5
6This library will grow to support many different pole placement methods.
7Currently it only supports direct pole placement.
8"""
9
10__author__ = 'Austin Schuh (austin.linux@gmail.com)'
11
12import numpy
13import slycot
Austin Schuhc976f492015-02-22 21:28:18 -080014import scipy.signal.cont2discrete
Austin Schuhc9177b52015-11-28 13:18:31 -080015import glog
brians343bc112013-02-10 01:53:46 +000016
17class Error (Exception):
18 """Base class for all control loop exceptions."""
19
20
21class PolePlacementError(Error):
22 """Exception raised when pole placement fails."""
23
24
25# TODO(aschuh): dplace should take a control system object.
26# There should also exist a function to manipulate laplace expressions, and
27# something to plot bode plots and all that.
28def dplace(A, B, poles, alpha=1e-6):
29 """Set the poles of (A - BF) to poles.
30
31 Args:
32 A: numpy.matrix(n x n), The A matrix.
33 B: numpy.matrix(n x m), The B matrix.
34 poles: array(imaginary numbers), The poles to use. Complex conjugates poles
35 must be in pairs.
36
37 Raises:
38 ValueError: Arguments were the wrong shape or there were too many poles.
39 PolePlacementError: Pole placement failed.
40
41 Returns:
42 numpy.matrix(m x n), K
43 """
44 # See http://www.icm.tu-bs.de/NICONET/doc/SB01BD.html for a description of the
45 # fortran code that this is cleaning up the interface to.
46 n = A.shape[0]
47 if A.shape[1] != n:
48 raise ValueError("A must be square")
49 if B.shape[0] != n:
50 raise ValueError("B must have the same number of states as A.")
51 m = B.shape[1]
52
53 num_poles = len(poles)
54 if num_poles > n:
55 raise ValueError("Trying to place more poles than states.")
56
57 out = slycot.sb01bd(n=n,
58 m=m,
59 np=num_poles,
60 alpha=alpha,
61 A=A,
62 B=B,
63 w=numpy.array(poles),
64 dico='D')
65
66 A_z = numpy.matrix(out[0])
67 num_too_small_eigenvalues = out[2]
68 num_assigned_eigenvalues = out[3]
69 num_uncontrollable_eigenvalues = out[4]
70 K = numpy.matrix(-out[5])
71 Z = numpy.matrix(out[6])
72
73 if num_too_small_eigenvalues != 0:
74 raise PolePlacementError("Number of eigenvalues that are too small "
75 "and are therefore unmodified is %d." %
76 num_too_small_eigenvalues)
77 if num_assigned_eigenvalues != num_poles:
78 raise PolePlacementError("Did not place all the eigenvalues that were "
79 "requested. Only placed %d eigenvalues." %
80 num_assigned_eigenvalues)
81 if num_uncontrollable_eigenvalues != 0:
82 raise PolePlacementError("Found %d uncontrollable eigenvlaues." %
83 num_uncontrollable_eigenvalues)
84
85 return K
Austin Schuhc8ca2442013-02-23 12:29:33 -080086
87
88def c2d(A, B, dt):
89 """Converts from continuous time state space representation to discrete time.
Austin Schuhc8ca2442013-02-23 12:29:33 -080090 Returns (A, B). C and D are unchanged."""
Austin Schuhc8ca2442013-02-23 12:29:33 -080091
Austin Schuhc6d7a0f2017-02-04 22:15:20 -080092 ans_a, ans_b, _, _, _ = scipy.signal.cont2discrete(
93 (numpy.array(A), numpy.array(B), None, None), dt)
Austin Schuhc976f492015-02-22 21:28:18 -080094 return numpy.matrix(ans_a), numpy.matrix(ans_b)
Austin Schuh7ec34fd2014-02-15 22:27:46 -080095
96def ctrb(A, B):
Brian Silvermane18cf502015-11-28 23:04:43 +000097 """Returns the controllability matrix.
Austin Schuh7ec34fd2014-02-15 22:27:46 -080098
Austin Schuhc9177b52015-11-28 13:18:31 -080099 This matrix must have full rank for all the states to be controllable.
Austin Schuh7ec34fd2014-02-15 22:27:46 -0800100 """
101 n = A.shape[0]
102 output = B
103 intermediate = B
104 for i in xrange(0, n):
105 intermediate = A * intermediate
106 output = numpy.concatenate((output, intermediate), axis=1)
107
108 return output
109
110def dlqr(A, B, Q, R):
111 """Solves for the optimal lqr controller.
112
113 x(n+1) = A * x(n) + B * u(n)
114 J = sum(0, inf, x.T * Q * x + u.T * R * u)
115 """
116
117 # P = (A.T * P * A) - (A.T * P * B * numpy.linalg.inv(R + B.T * P *B) * (A.T * P.T * B).T + Q
118
Austin Schuh1a387962015-01-31 16:36:20 -0800119 P, rcond, w, S, T = slycot.sb02od(
120 n=A.shape[0], m=B.shape[1], A=A, B=B, Q=Q, R=R, dico='D')
Austin Schuh7ec34fd2014-02-15 22:27:46 -0800121
122 F = numpy.linalg.inv(R + B.T * P *B) * B.T * P * A
123 return F
Austin Schuhe4a14f22015-03-01 00:12:29 -0800124
125def kalman(A, B, C, Q, R):
126 """Solves for the steady state kalman gain and covariance matricies.
127
128 Args:
129 A, B, C: SS matricies.
130 Q: The model uncertantity
131 R: The measurement uncertainty
132
133 Returns:
134 KalmanGain, Covariance.
135 """
Austin Schuh572ff402015-11-08 12:17:50 -0800136 I = numpy.matrix(numpy.eye(Q.shape[0]))
137 Z = numpy.matrix(numpy.zeros(Q.shape[0]))
Austin Schuhc9177b52015-11-28 13:18:31 -0800138 n = A.shape[0]
139 m = C.shape[0]
140
141 controllability_rank = numpy.linalg.matrix_rank(ctrb(A.T, C.T))
Brian Silvermane18cf502015-11-28 23:04:43 +0000142 if controllability_rank != n:
Austin Schuhc9177b52015-11-28 13:18:31 -0800143 glog.warning('Observability of %d != %d, unobservable state',
Brian Silvermane18cf502015-11-28 23:04:43 +0000144 controllability_rank, n)
Austin Schuhe4a14f22015-03-01 00:12:29 -0800145
Austin Schuh572ff402015-11-08 12:17:50 -0800146 # Compute the steady state covariance matrix.
Austin Schuhc9177b52015-11-28 13:18:31 -0800147 P_prior, rcond, w, S, T = slycot.sb02od(n=n, m=m, A=A.T, B=C.T, Q=Q, R=R, dico='D')
Austin Schuh572ff402015-11-08 12:17:50 -0800148 S = C * P_prior * C.T + R
149 K = numpy.linalg.lstsq(S.T, (P_prior * C.T).T)[0].T
150 P = (I - K * C) * P_prior
Austin Schuhe4a14f22015-03-01 00:12:29 -0800151
152 return K, P
Austin Schuh86093ad2016-02-06 14:29:34 -0800153
Austin Schuh3ad5ed82017-02-25 21:36:19 -0800154
155def kalmd(A_continuous, B_continuous, Q_continuous, R_continuous, dt):
156 """Converts a continuous time kalman filter to discrete time.
157
158 Args:
159 A_continuous: The A continuous matrix
160 B_continuous: the B continuous matrix
161 Q_continuous: The continuous cost matrix
162 R_continuous: The R continuous matrix
163 dt: Timestep
164
165 The math for this is from:
166 https://www.mathworks.com/help/control/ref/kalmd.html
167
168 Returns:
169 The discrete matrices of A, B, Q, and R.
170 """
171 # TODO(austin): Verify that the dimensions make sense.
172 number_of_states = A_continuous.shape[0]
173 number_of_inputs = B_continuous.shape[1]
174 M = numpy.zeros((len(A_continuous) + number_of_inputs,
175 len(A_continuous) + number_of_inputs))
176 M[0:number_of_states, 0:number_of_states] = A_continuous
177 M[0:number_of_states, number_of_states:] = B_continuous
178 M_exp = scipy.linalg.expm(M * dt)
179 A_discrete = M_exp[0:number_of_states, 0:number_of_states]
180 B_discrete = numpy.matrix(M_exp[0:number_of_states, number_of_states:])
181 Q_continuous = (Q_continuous + Q_continuous.T) / 2.0
182 R_continuous = (R_continuous + R_continuous.T) / 2.0
183 M = numpy.concatenate((-A_continuous, Q_continuous), axis=1)
184 M = numpy.concatenate(
185 (M, numpy.concatenate((numpy.matrix(
186 numpy.zeros((number_of_states, number_of_states))),
187 numpy.transpose(A_continuous)), axis = 1)), axis = 0)
188 phi = numpy.matrix(scipy.linalg.expm(M*dt))
189 phi12 = phi[0:number_of_states, number_of_states:(2*number_of_states)]
190 phi22 = phi[number_of_states:2*number_of_states, number_of_states:2*number_of_states]
191 Q_discrete = phi22.T * phi12
192 Q_discrete = (Q_discrete + Q_discrete.T) / 2.0
193 R_discrete = R_continuous / dt
194 return (A_discrete, B_discrete, Q_discrete, R_discrete)
195
196
Austin Schuh86093ad2016-02-06 14:29:34 -0800197def TwoStateFeedForwards(B, Q):
198 """Computes the feed forwards constant for a 2 state controller.
199
200 This will take the form U = Kff * (R(n + 1) - A * R(n)), where Kff is the
201 feed-forwards constant. It is important that Kff is *only* computed off
202 the goal and not the feed back terms.
203
204 Args:
205 B: numpy.Matrix[num_states, num_inputs] The B matrix.
206 Q: numpy.Matrix[num_states, num_states] The Q (cost) matrix.
207
208 Returns:
209 numpy.Matrix[num_inputs, num_states]
210 """
211
212 # We want to find the optimal U such that we minimize the tracking cost.
213 # This means that we want to minimize
214 # (B * U - (R(n+1) - A R(n)))^T * Q * (B * U - (R(n+1) - A R(n)))
215 # TODO(austin): This doesn't take into account the cost of U
216
217 return numpy.linalg.inv(B.T * Q * B) * B.T * Q.T