blob: ca419058a6ac46a7f0f99f477e37ed7f4e255693 [file] [log] [blame]
Brian Silverman4770c7d2020-02-17 20:34:42 -08001#include <opencv2/calib3d.hpp>
Brian Silverman967e5df2020-02-09 16:43:34 -08002#include <opencv2/features2d.hpp>
3#include <opencv2/imgproc.hpp>
4
Brian Silverman9dd793b2020-01-31 23:52:21 -08005#include "aos/events/shm_event_loop.h"
Brian Silverman4770c7d2020-02-17 20:34:42 -08006#include "aos/flatbuffer_merge.h"
Brian Silverman9dd793b2020-01-31 23:52:21 -08007#include "aos/init.h"
Brian Silverman4770c7d2020-02-17 20:34:42 -08008#include "aos/network/team_number.h"
Brian Silverman9dd793b2020-01-31 23:52:21 -08009
Brian Silverman967e5df2020-02-09 16:43:34 -080010#include "y2020/vision/sift/demo_sift.h"
11#include "y2020/vision/sift/sift971.h"
12#include "y2020/vision/sift/sift_generated.h"
13#include "y2020/vision/sift/sift_training_generated.h"
Brian Silverman9dd793b2020-01-31 23:52:21 -080014#include "y2020/vision/v4l2_reader.h"
Brian Silverman967e5df2020-02-09 16:43:34 -080015#include "y2020/vision/vision_generated.h"
Brian Silverman9dd793b2020-01-31 23:52:21 -080016
17namespace frc971 {
18namespace vision {
19namespace {
20
Brian Silverman967e5df2020-02-09 16:43:34 -080021class CameraReader {
22 public:
23 CameraReader(aos::EventLoop *event_loop,
24 const sift::TrainingData *training_data, V4L2Reader *reader,
25 cv::FlannBasedMatcher *matcher)
26 : event_loop_(event_loop),
27 training_data_(training_data),
Brian Silverman4770c7d2020-02-17 20:34:42 -080028 camera_calibration_(FindCameraCalibration()),
Brian Silverman967e5df2020-02-09 16:43:34 -080029 reader_(reader),
30 matcher_(matcher),
31 image_sender_(event_loop->MakeSender<CameraImage>("/camera")),
32 result_sender_(
33 event_loop->MakeSender<sift::ImageMatchResult>("/camera")),
34 read_image_timer_(event_loop->AddTimer([this]() {
35 ReadImage();
36 read_image_timer_->Setup(event_loop_->monotonic_now());
37 })) {
38 CopyTrainingFeatures();
39 // Technically we don't need to do this, but doing it now avoids the first
40 // match attempt being slow.
41 matcher_->train();
42
43 event_loop->OnRun(
44 [this]() { read_image_timer_->Setup(event_loop_->monotonic_now()); });
45 }
46
47 private:
Brian Silverman4770c7d2020-02-17 20:34:42 -080048 const sift::CameraCalibration *FindCameraCalibration() const;
49
Brian Silverman967e5df2020-02-09 16:43:34 -080050 // Copies the information from training_data_ into matcher_.
51 void CopyTrainingFeatures();
52 // Processes an image (including sending the results).
53 void ProcessImage(const CameraImage &image);
54 // Reads an image, and then performs all of our processing on it.
55 void ReadImage();
56
57 flatbuffers::Offset<
58 flatbuffers::Vector<flatbuffers::Offset<sift::ImageMatch>>>
59 PackImageMatches(flatbuffers::FlatBufferBuilder *fbb,
60 const std::vector<std::vector<cv::DMatch>> &matches);
61 flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<sift::Feature>>>
62 PackFeatures(flatbuffers::FlatBufferBuilder *fbb,
63 const std::vector<cv::KeyPoint> &keypoints,
64 const cv::Mat &descriptors);
65
Brian Silverman4d4a70d2020-02-17 13:03:19 -080066 // Returns the 3D location for the specified training feature.
Brian Silverman4770c7d2020-02-17 20:34:42 -080067 cv::Point3f Training3dPoint(int training_image_index,
68 int feature_index) const {
Brian Silverman4d4a70d2020-02-17 13:03:19 -080069 const sift::KeypointFieldLocation *const location =
70 training_data_->images()
71 ->Get(training_image_index)
72 ->features()
73 ->Get(feature_index)
74 ->field_location();
75 return cv::Point3f(location->x(), location->y(), location->z());
76 }
77
Brian Silverman4770c7d2020-02-17 20:34:42 -080078 const sift::TransformationMatrix *FieldToTarget(int training_image_index) {
79 return training_data_->images()
80 ->Get(training_image_index)
81 ->field_to_target();
82 }
83
Brian Silverman4d4a70d2020-02-17 13:03:19 -080084 int number_training_images() const {
85 return training_data_->images()->size();
86 }
87
Brian Silverman4770c7d2020-02-17 20:34:42 -080088 cv::Mat CameraIntrinsics() const {
89 const cv::Mat result(3, 3, CV_32F,
90 const_cast<void *>(static_cast<const void *>(
91 camera_calibration_->intrinsics()->data())));
92 CHECK_EQ(result.total(), camera_calibration_->intrinsics()->size());
93 return result;
94 }
95
Brian Silverman967e5df2020-02-09 16:43:34 -080096 aos::EventLoop *const event_loop_;
97 const sift::TrainingData *const training_data_;
Brian Silverman4770c7d2020-02-17 20:34:42 -080098 const sift::CameraCalibration *const camera_calibration_;
Brian Silverman967e5df2020-02-09 16:43:34 -080099 V4L2Reader *const reader_;
100 cv::FlannBasedMatcher *const matcher_;
101 aos::Sender<CameraImage> image_sender_;
102 aos::Sender<sift::ImageMatchResult> result_sender_;
103 // We schedule this immediately to read an image. Having it on a timer means
104 // other things can run on the event loop in between.
105 aos::TimerHandler *const read_image_timer_;
106
107 const std::unique_ptr<frc971::vision::SIFT971_Impl> sift_{
108 new frc971::vision::SIFT971_Impl()};
109};
110
Brian Silverman4770c7d2020-02-17 20:34:42 -0800111const sift::CameraCalibration *CameraReader::FindCameraCalibration() const {
112 const std::string_view node_name = event_loop_->node()->name()->string_view();
113 const int team_number = aos::network::GetTeamNumber();
114 for (const sift::CameraCalibration *candidate :
115 *training_data_->camera_calibrations()) {
116 if (candidate->node_name()->string_view() != node_name) {
117 continue;
118 }
119 if (candidate->team_number() != team_number) {
120 continue;
121 }
122 return candidate;
123 }
124 LOG(FATAL) << ": Failed to find camera calibration for " << node_name
125 << " on " << team_number;
126}
127
Brian Silverman967e5df2020-02-09 16:43:34 -0800128void CameraReader::CopyTrainingFeatures() {
129 for (const sift::TrainingImage *training_image : *training_data_->images()) {
130 cv::Mat features(training_image->features()->size(), 128, CV_32F);
Jim Ostrowski38bb70b2020-02-21 20:46:10 -0800131 for (size_t i = 0; i < training_image->features()->size(); ++i) {
Brian Silverman967e5df2020-02-09 16:43:34 -0800132 const sift::Feature *feature_table = training_image->features()->Get(i);
Brian Silverman4770c7d2020-02-17 20:34:42 -0800133
134 // We don't need this information right now, but make sure it's here to
135 // avoid crashes that only occur when specific features are matched.
136 CHECK(feature_table->has_field_location());
137
Brian Silverman967e5df2020-02-09 16:43:34 -0800138 const flatbuffers::Vector<float> *const descriptor =
139 feature_table->descriptor();
140 CHECK_EQ(descriptor->size(), 128u) << ": Unsupported feature size";
141 cv::Mat(1, descriptor->size(), CV_32F,
142 const_cast<void *>(static_cast<const void *>(descriptor->data())))
143 .copyTo(features(cv::Range(i, i + 1), cv::Range(0, 128)));
144 }
145 matcher_->add(features);
146 }
147}
148
149void CameraReader::ProcessImage(const CameraImage &image) {
Brian Silverman4770c7d2020-02-17 20:34:42 -0800150 // Be ready to pack the results up and send them out. We can pack things into
151 // this memory as we go to allow reusing temporaries better.
152 auto builder = result_sender_.MakeBuilder();
153 const auto camera_calibration_offset =
154 aos::CopyFlatBuffer(camera_calibration_, builder.fbb());
155
Brian Silverman967e5df2020-02-09 16:43:34 -0800156 // First, we need to extract the brightness information. This can't really be
157 // fused into the beginning of the SIFT algorithm because the algorithm needs
158 // to look at the base image directly. It also only takes 2ms on our images.
159 // This is converting from YUYV to a grayscale image.
Jim Ostrowski38bb70b2020-02-21 20:46:10 -0800160 cv::Mat image_mat(image.rows(), image.cols(), CV_8U);
Brian Silverman967e5df2020-02-09 16:43:34 -0800161 CHECK(image_mat.isContinuous());
162 const int number_pixels = image.rows() * image.cols();
163 for (int i = 0; i < number_pixels; ++i) {
164 reinterpret_cast<uint8_t *>(image_mat.data)[i] =
165 image.data()->data()[i * 2];
166 }
167
168 // Next, grab the features from the image.
169 std::vector<cv::KeyPoint> keypoints;
170 cv::Mat descriptors;
171 sift_->detectAndCompute(image_mat, cv::noArray(), keypoints, descriptors);
Brian Silverman4770c7d2020-02-17 20:34:42 -0800172 const auto features_offset =
173 PackFeatures(builder.fbb(), keypoints, descriptors);
Brian Silverman967e5df2020-02-09 16:43:34 -0800174
175 // Then, match those features against our training data.
176 std::vector<std::vector<cv::DMatch>> matches;
177 matcher_->knnMatch(/* queryDescriptors */ descriptors, matches, /* k */ 2);
Brian Silverman967e5df2020-02-09 16:43:34 -0800178 const auto image_matches_offset = PackImageMatches(builder.fbb(), matches);
Brian Silverman4770c7d2020-02-17 20:34:42 -0800179
180 struct PerImageMatches {
181 std::vector<const std::vector<cv::DMatch> *> matches;
182 std::vector<cv::Point3f> training_points_3d;
183 std::vector<cv::Point2f> query_points;
184 };
185 std::vector<PerImageMatches> per_image_matches(number_training_images());
186
187 // Pull out the good matches which we want for each image.
188 // Discard the bad matches per Lowe's ratio test.
189 // (Lowe originally proposed 0.7 ratio, but 0.75 was later proposed as a
190 // better option. We'll go with the more conservative (fewer, better matches)
191 // for now).
192 for (const std::vector<cv::DMatch> &match : matches) {
193 CHECK_EQ(2u, match.size());
194 CHECK_LE(match[0].distance, match[1].distance);
195 CHECK_LT(match[0].imgIdx, number_training_images());
196 CHECK_LT(match[1].imgIdx, number_training_images());
197 CHECK_EQ(match[0].queryIdx, match[1].queryIdx);
198 if (!(match[0].distance < 0.7 * match[1].distance)) {
199 continue;
200 }
201
202 const int training_image = match[0].imgIdx;
203 CHECK_LT(training_image, static_cast<int>(per_image_matches.size()));
204 PerImageMatches *const per_image = &per_image_matches[training_image];
205 per_image->matches.push_back(&match);
206 per_image->training_points_3d.push_back(
207 Training3dPoint(training_image, match[0].trainIdx));
208
209 const cv::KeyPoint &keypoint = keypoints[match[0].queryIdx];
210 per_image->query_points.push_back(keypoint.pt);
211 }
212
213 // The minimum number of matches in a training image for us to use it.
214 static constexpr int kMinimumMatchCount = 10;
215
216 std::vector<flatbuffers::Offset<sift::CameraPose>> camera_poses;
217 for (size_t i = 0; i < per_image_matches.size(); ++i) {
218 const PerImageMatches &per_image = per_image_matches[i];
219 if (per_image.matches.size() < kMinimumMatchCount) {
220 continue;
221 }
222
223 cv::Mat R_camera_target, T_camera_target;
224 cv::solvePnPRansac(per_image.training_points_3d, per_image.query_points,
225 CameraIntrinsics(), cv::noArray(), R_camera_target,
226 T_camera_target);
227
228 sift::CameraPose::Builder pose_builder(*builder.fbb());
229 {
Jim Ostrowski38bb70b2020-02-21 20:46:10 -0800230 CHECK_EQ(cv::Size(3, 3), R_camera_target.size());
231 CHECK_EQ(cv::Size(3, 1), T_camera_target.size());
232 cv::Mat camera_target = cv::Mat::zeros(4, 4, CV_32F);
233 R_camera_target.copyTo(camera_target(cv::Range(0, 3), cv::Range(0, 3)));
234 T_camera_target.copyTo(camera_target(cv::Range(3, 4), cv::Range(0, 3)));
235 camera_target.at<float>(3, 3) = 1;
236 CHECK(camera_target.isContinuous());
237 const auto data_offset = builder.fbb()->CreateVector<float>(
238 reinterpret_cast<float *>(camera_target.data), camera_target.total());
239 pose_builder.add_camera_to_target(
240 sift::CreateTransformationMatrix(*builder.fbb(), data_offset));
Brian Silverman4770c7d2020-02-17 20:34:42 -0800241 }
242 pose_builder.add_field_to_target(
243 aos::CopyFlatBuffer(FieldToTarget(i), builder.fbb()));
244 camera_poses.emplace_back(pose_builder.Finish());
245 }
246 const auto camera_poses_offset = builder.fbb()->CreateVector(camera_poses);
Brian Silverman967e5df2020-02-09 16:43:34 -0800247
248 sift::ImageMatchResult::Builder result_builder(*builder.fbb());
249 result_builder.add_image_matches(image_matches_offset);
Brian Silverman4770c7d2020-02-17 20:34:42 -0800250 result_builder.add_camera_poses(camera_poses_offset);
Brian Silverman967e5df2020-02-09 16:43:34 -0800251 result_builder.add_features(features_offset);
252 result_builder.add_image_monotonic_timestamp_ns(
253 image.monotonic_timestamp_ns());
Brian Silverman4770c7d2020-02-17 20:34:42 -0800254 result_builder.add_camera_calibration(camera_calibration_offset);
Brian Silverman967e5df2020-02-09 16:43:34 -0800255 builder.Send(result_builder.Finish());
256}
257
258void CameraReader::ReadImage() {
259 if (!reader_->ReadLatestImage()) {
260 LOG(INFO) << "No image, sleeping";
261 std::this_thread::sleep_for(std::chrono::milliseconds(10));
262 return;
263 }
264
265 ProcessImage(reader_->LatestImage());
266
267 reader_->SendLatestImage();
268}
269
270flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<sift::ImageMatch>>>
271CameraReader::PackImageMatches(
272 flatbuffers::FlatBufferBuilder *fbb,
273 const std::vector<std::vector<cv::DMatch>> &matches) {
274 // First, we need to pull out all the matches for each image. Might as well
275 // build up the Match tables at the same time.
Brian Silverman4d4a70d2020-02-17 13:03:19 -0800276 std::vector<std::vector<sift::Match>> per_image_matches(
277 number_training_images());
Brian Silverman967e5df2020-02-09 16:43:34 -0800278 for (const std::vector<cv::DMatch> &image_matches : matches) {
279 for (const cv::DMatch &image_match : image_matches) {
Brian Silverman4d4a70d2020-02-17 13:03:19 -0800280 CHECK_LT(image_match.imgIdx, number_training_images());
281 per_image_matches[image_match.imgIdx].emplace_back();
282 sift::Match *const match = &per_image_matches[image_match.imgIdx].back();
283 match->mutate_query_feature(image_match.queryIdx);
284 match->mutate_train_feature(image_match.trainIdx);
285 match->mutate_distance(image_match.distance);
Brian Silverman967e5df2020-02-09 16:43:34 -0800286 }
287 }
288
289 // Then, we need to build up each ImageMatch table.
290 std::vector<flatbuffers::Offset<sift::ImageMatch>> image_match_tables;
291 for (size_t i = 0; i < per_image_matches.size(); ++i) {
Brian Silverman4d4a70d2020-02-17 13:03:19 -0800292 const std::vector<sift::Match> &this_image_matches = per_image_matches[i];
Brian Silverman967e5df2020-02-09 16:43:34 -0800293 if (this_image_matches.empty()) {
294 continue;
295 }
Brian Silverman4d4a70d2020-02-17 13:03:19 -0800296 const auto vector_offset = fbb->CreateVectorOfStructs(this_image_matches);
Brian Silverman967e5df2020-02-09 16:43:34 -0800297 sift::ImageMatch::Builder image_builder(*fbb);
298 image_builder.add_train_image(i);
299 image_builder.add_matches(vector_offset);
300 image_match_tables.emplace_back(image_builder.Finish());
301 }
302
303 return fbb->CreateVector(image_match_tables);
304}
305
306flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<sift::Feature>>>
307CameraReader::PackFeatures(flatbuffers::FlatBufferBuilder *fbb,
308 const std::vector<cv::KeyPoint> &keypoints,
309 const cv::Mat &descriptors) {
310 const int number_features = keypoints.size();
311 CHECK_EQ(descriptors.rows, number_features);
312 std::vector<flatbuffers::Offset<sift::Feature>> features_vector(
313 number_features);
314 for (int i = 0; i < number_features; ++i) {
315 const auto submat = descriptors(cv::Range(i, i + 1), cv::Range(0, 128));
316 CHECK(submat.isContinuous());
317 const auto descriptor_offset =
318 fbb->CreateVector(reinterpret_cast<float *>(submat.data), 128);
319 sift::Feature::Builder feature_builder(*fbb);
320 feature_builder.add_descriptor(descriptor_offset);
321 feature_builder.add_x(keypoints[i].pt.x);
322 feature_builder.add_y(keypoints[i].pt.y);
323 feature_builder.add_size(keypoints[i].size);
324 feature_builder.add_angle(keypoints[i].angle);
325 feature_builder.add_response(keypoints[i].response);
326 feature_builder.add_octave(keypoints[i].octave);
327 CHECK_EQ(-1, keypoints[i].class_id)
328 << ": Not sure what to do with a class id";
329 features_vector[i] = feature_builder.Finish();
330 }
331 return fbb->CreateVector(features_vector);
332}
333
Brian Silverman9dd793b2020-01-31 23:52:21 -0800334void CameraReaderMain() {
335 aos::FlatbufferDetachedBuffer<aos::Configuration> config =
336 aos::configuration::ReadConfig("config.json");
337
Brian Silverman967e5df2020-02-09 16:43:34 -0800338 const auto training_data_bfbs = DemoSiftData();
339 const sift::TrainingData *const training_data =
340 flatbuffers::GetRoot<sift::TrainingData>(training_data_bfbs.data());
341 {
342 flatbuffers::Verifier verifier(
343 reinterpret_cast<const uint8_t *>(training_data_bfbs.data()),
344 training_data_bfbs.size());
345 CHECK(training_data->Verify(verifier));
346 }
347
348 const auto index_params = cv::makePtr<cv::flann::IndexParams>();
349 index_params->setAlgorithm(cvflann::FLANN_INDEX_KDTREE);
350 index_params->setInt("trees", 5);
351 const auto search_params =
352 cv::makePtr<cv::flann::SearchParams>(/* checks */ 50);
353 cv::FlannBasedMatcher matcher(index_params, search_params);
354
Brian Silverman9dd793b2020-01-31 23:52:21 -0800355 aos::ShmEventLoop event_loop(&config.message());
356 V4L2Reader v4l2_reader(&event_loop, "/dev/video0");
Jim Ostrowski38bb70b2020-02-21 20:46:10 -0800357 CameraReader camera_reader(&event_loop, training_data, &v4l2_reader,
358 &matcher);
Brian Silverman9dd793b2020-01-31 23:52:21 -0800359
Brian Silverman967e5df2020-02-09 16:43:34 -0800360 event_loop.Run();
Brian Silverman9dd793b2020-01-31 23:52:21 -0800361}
362
363} // namespace
364} // namespace vision
365} // namespace frc971
366
Brian Silverman9dd793b2020-01-31 23:52:21 -0800367int main(int argc, char **argv) {
368 aos::InitGoogle(&argc, &argv);
369 frc971::vision::CameraReaderMain();
370}