Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | #include "main.h" |
| 12 | #include <limits> |
| 13 | #include <Eigen/Eigenvalues> |
| 14 | |
| 15 | template<typename MatrixType> void eigensolver(const MatrixType& m) |
| 16 | { |
| 17 | typedef typename MatrixType::Index Index; |
| 18 | /* this test covers the following files: |
| 19 | EigenSolver.h |
| 20 | */ |
| 21 | Index rows = m.rows(); |
| 22 | Index cols = m.cols(); |
| 23 | |
| 24 | typedef typename MatrixType::Scalar Scalar; |
| 25 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 26 | typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; |
| 27 | typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex; |
| 28 | |
| 29 | MatrixType a = MatrixType::Random(rows,cols); |
| 30 | MatrixType a1 = MatrixType::Random(rows,cols); |
| 31 | MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1; |
| 32 | |
| 33 | EigenSolver<MatrixType> ei0(symmA); |
| 34 | VERIFY_IS_EQUAL(ei0.info(), Success); |
| 35 | VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix()); |
| 36 | VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()), |
| 37 | (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal())); |
| 38 | |
| 39 | EigenSolver<MatrixType> ei1(a); |
| 40 | VERIFY_IS_EQUAL(ei1.info(), Success); |
| 41 | VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix()); |
| 42 | VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(), |
| 43 | ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); |
| 44 | VERIFY_IS_APPROX(ei1.eigenvectors().colwise().norm(), RealVectorType::Ones(rows).transpose()); |
| 45 | VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues()); |
| 46 | |
| 47 | EigenSolver<MatrixType> ei2; |
| 48 | ei2.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a); |
| 49 | VERIFY_IS_EQUAL(ei2.info(), Success); |
| 50 | VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors()); |
| 51 | VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues()); |
| 52 | if (rows > 2) { |
| 53 | ei2.setMaxIterations(1).compute(a); |
| 54 | VERIFY_IS_EQUAL(ei2.info(), NoConvergence); |
| 55 | VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1); |
| 56 | } |
| 57 | |
| 58 | EigenSolver<MatrixType> eiNoEivecs(a, false); |
| 59 | VERIFY_IS_EQUAL(eiNoEivecs.info(), Success); |
| 60 | VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); |
| 61 | VERIFY_IS_APPROX(ei1.pseudoEigenvalueMatrix(), eiNoEivecs.pseudoEigenvalueMatrix()); |
| 62 | |
| 63 | MatrixType id = MatrixType::Identity(rows, cols); |
| 64 | VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1)); |
| 65 | |
| 66 | if (rows > 2) |
| 67 | { |
| 68 | // Test matrix with NaN |
| 69 | a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); |
| 70 | EigenSolver<MatrixType> eiNaN(a); |
| 71 | VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence); |
| 72 | } |
| 73 | } |
| 74 | |
| 75 | template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m) |
| 76 | { |
| 77 | EigenSolver<MatrixType> eig; |
| 78 | VERIFY_RAISES_ASSERT(eig.eigenvectors()); |
| 79 | VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors()); |
| 80 | VERIFY_RAISES_ASSERT(eig.pseudoEigenvalueMatrix()); |
| 81 | VERIFY_RAISES_ASSERT(eig.eigenvalues()); |
| 82 | |
| 83 | MatrixType a = MatrixType::Random(m.rows(),m.cols()); |
| 84 | eig.compute(a, false); |
| 85 | VERIFY_RAISES_ASSERT(eig.eigenvectors()); |
| 86 | VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors()); |
| 87 | } |
| 88 | |
| 89 | void test_eigensolver_generic() |
| 90 | { |
| 91 | int s = 0; |
| 92 | for(int i = 0; i < g_repeat; i++) { |
| 93 | CALL_SUBTEST_1( eigensolver(Matrix4f()) ); |
| 94 | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); |
| 95 | CALL_SUBTEST_2( eigensolver(MatrixXd(s,s)) ); |
| 96 | |
| 97 | // some trivial but implementation-wise tricky cases |
| 98 | CALL_SUBTEST_2( eigensolver(MatrixXd(1,1)) ); |
| 99 | CALL_SUBTEST_2( eigensolver(MatrixXd(2,2)) ); |
| 100 | CALL_SUBTEST_3( eigensolver(Matrix<double,1,1>()) ); |
| 101 | CALL_SUBTEST_4( eigensolver(Matrix2d()) ); |
| 102 | } |
| 103 | |
| 104 | CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4f()) ); |
| 105 | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); |
| 106 | CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXd(s,s)) ); |
| 107 | CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<double,1,1>()) ); |
| 108 | CALL_SUBTEST_4( eigensolver_verify_assert(Matrix2d()) ); |
| 109 | |
| 110 | // Test problem size constructors |
| 111 | CALL_SUBTEST_5(EigenSolver<MatrixXf> tmp(s)); |
| 112 | |
| 113 | // regression test for bug 410 |
| 114 | CALL_SUBTEST_2( |
| 115 | { |
| 116 | MatrixXd A(1,1); |
| 117 | A(0,0) = std::sqrt(-1.); |
| 118 | Eigen::EigenSolver<MatrixXd> solver(A); |
| 119 | MatrixXd V(1, 1); |
| 120 | V(0,0) = solver.eigenvectors()(0,0).real(); |
| 121 | } |
| 122 | ); |
| 123 | |
| 124 | TEST_SET_BUT_UNUSED_VARIABLE(s) |
| 125 | } |