blob: 8901b74f61add85fecfd862c7a21b0bc65ed471c [file] [log] [blame]
jerrymf1579332013-02-07 01:56:28 +00001/*----------------------------------------------------------------------------*/
2/* Copyright (c) FIRST 2008. All Rights Reserved. */
3/* Open Source Software - may be modified and shared by FRC teams. The code */
4/* must be accompanied by the FIRST BSD license file in $(WIND_BASE)/WPILib. */
5/*----------------------------------------------------------------------------*/
6
7#include "PWM.h"
8
9#include "DigitalModule.h"
10#include "NetworkCommunication/UsageReporting.h"
11#include "Resource.h"
12#include "Utility.h"
13#include "WPIErrors.h"
14
15const UINT32 PWM::kDefaultPwmPeriod;
16const UINT32 PWM::kDefaultMinPwmHigh;
17const INT32 PWM::kPwmDisabled;
18static Resource *allocated = NULL;
19
20/**
21 * Initialize PWMs given an module and channel.
22 *
23 * This method is private and is the common path for all the constructors for creating PWM
24 * instances. Checks module and channel value ranges and allocates the appropriate channel.
25 * The allocation is only done to help users ensure that they don't double assign channels.
26 */
27void PWM::InitPWM(UINT8 moduleNumber, UINT32 channel)
28{
jerrym37afdca2013-03-03 01:17:57 +000029 m_table = NULL;
jerrymf1579332013-02-07 01:56:28 +000030 char buf[64];
31 Resource::CreateResourceObject(&allocated, tDIO::kNumSystems * kPwmChannels);
32 if (!CheckPWMModule(moduleNumber))
33 {
34 snprintf(buf, 64, "Digital Module %d", moduleNumber);
35 wpi_setWPIErrorWithContext(ModuleIndexOutOfRange, buf);
36 return;
37 }
38 if (!CheckPWMChannel(channel))
39 {
40 snprintf(buf, 64, "PWM Channel %d", channel);
41 wpi_setWPIErrorWithContext(ChannelIndexOutOfRange, buf);
42 return;
43 }
44
45 snprintf(buf, 64, "PWM %d (Module: %d)", channel, moduleNumber);
46 if (allocated->Allocate((moduleNumber - 1) * kPwmChannels + channel - 1, buf) == ~0ul)
47 {
48 CloneError(allocated);
49 return;
50 }
51 m_channel = channel;
52 m_module = DigitalModule::GetInstance(moduleNumber);
53 m_module->SetPWM(m_channel, kPwmDisabled);
54 m_eliminateDeadband = false;
55
56 nUsageReporting::report(nUsageReporting::kResourceType_PWM, channel, moduleNumber - 1);
57}
58
59/**
60 * Allocate a PWM given a module and channel.
61 * Allocate a PWM using a module and channel number.
62 *
63 * @param moduleNumber The digital module (1 or 2).
64 * @param channel The PWM channel on the digital module (1..10).
65 */
66PWM::PWM(UINT8 moduleNumber, UINT32 channel)
67 : m_module(NULL)
68{
69 InitPWM(moduleNumber, channel);
70}
71
72/**
73 * Allocate a PWM in the default module given a channel.
74 *
75 * Using a default module allocate a PWM given the channel number. The default module is the first
76 * slot numerically in the cRIO chassis.
77 *
78 * @param channel The PWM channel on the digital module.
79 */
80PWM::PWM(UINT32 channel)
81 : m_module(NULL)
82{
83 InitPWM(GetDefaultDigitalModule(), channel);
84}
85
86/**
87 * Free the PWM channel.
88 *
89 * Free the resource associated with the PWM channel and set the value to 0.
90 */
91PWM::~PWM()
92{
93 if (m_module)
94 {
95 m_module->SetPWM(m_channel, kPwmDisabled);
96 allocated->Free((m_module->GetNumber() - 1) * kPwmChannels + m_channel - 1);
97 }
98}
99
100/**
101 * Optionally eliminate the deadband from a speed controller.
102 * @param eliminateDeadband If true, set the motor curve on the Jaguar to eliminate
103 * the deadband in the middle of the range. Otherwise, keep the full range without
104 * modifying any values.
105 */
106void PWM::EnableDeadbandElimination(bool eliminateDeadband)
107{
108 if (StatusIsFatal()) return;
109 m_eliminateDeadband = eliminateDeadband;
110}
111
112/**
113 * Set the bounds on the PWM values.
114 * This sets the bounds on the PWM values for a particular each type of controller. The values
115 * determine the upper and lower speeds as well as the deadband bracket.
116 * @param max The Minimum pwm value
117 * @param deadbandMax The high end of the deadband range
118 * @param center The center speed (off)
119 * @param deadbandMin The low end of the deadband range
120 * @param min The minimum pwm value
121 */
122void PWM::SetBounds(INT32 max, INT32 deadbandMax, INT32 center, INT32 deadbandMin, INT32 min)
123{
124 if (StatusIsFatal()) return;
125 m_maxPwm = max;
126 m_deadbandMaxPwm = deadbandMax;
127 m_centerPwm = center;
128 m_deadbandMinPwm = deadbandMin;
129 m_minPwm = min;
130}
131
132UINT32 PWM::GetModuleNumber()
133{
134 return m_module->GetNumber();
135}
136
137/**
138 * Set the PWM value based on a position.
139 *
140 * This is intended to be used by servos.
141 *
142 * @pre SetMaxPositivePwm() called.
143 * @pre SetMinNegativePwm() called.
144 *
145 * @param pos The position to set the servo between 0.0 and 1.0.
146 */
147void PWM::SetPosition(float pos)
148{
149 if (StatusIsFatal()) return;
150 if (pos < 0.0)
151 {
152 pos = 0.0;
153 }
154 else if (pos > 1.0)
155 {
156 pos = 1.0;
157 }
158
159 INT32 rawValue;
160 // note, need to perform the multiplication below as floating point before converting to int
161 rawValue = (INT32)( (pos * (float) GetFullRangeScaleFactor()) + GetMinNegativePwm());
162
163 wpi_assert((rawValue >= GetMinNegativePwm()) && (rawValue <= GetMaxPositivePwm()));
164 wpi_assert(rawValue != kPwmDisabled);
165
166 // send the computed pwm value to the FPGA
167 SetRaw((UINT8)rawValue);
168}
169
170/**
171 * Get the PWM value in terms of a position.
172 *
173 * This is intended to be used by servos.
174 *
175 * @pre SetMaxPositivePwm() called.
176 * @pre SetMinNegativePwm() called.
177 *
178 * @return The position the servo is set to between 0.0 and 1.0.
179 */
180float PWM::GetPosition()
181{
182 if (StatusIsFatal()) return 0.0;
183 INT32 value = GetRaw();
184 if (value < GetMinNegativePwm())
185 {
186 return 0.0;
187 }
188 else if (value > GetMaxPositivePwm())
189 {
190 return 1.0;
191 }
192 else
193 {
194 return (float)(value - GetMinNegativePwm()) / (float)GetFullRangeScaleFactor();
195 }
196}
197
198/**
199 * Set the PWM value based on a speed.
200 *
201 * This is intended to be used by speed controllers.
202 *
203 * @pre SetMaxPositivePwm() called.
204 * @pre SetMinPositivePwm() called.
205 * @pre SetCenterPwm() called.
206 * @pre SetMaxNegativePwm() called.
207 * @pre SetMinNegativePwm() called.
208 *
209 * @param speed The speed to set the speed controller between -1.0 and 1.0.
210 */
211void PWM::SetSpeed(float speed)
212{
213 if (StatusIsFatal()) return;
214 // clamp speed to be in the range 1.0 >= speed >= -1.0
215 if (speed < -1.0)
216 {
217 speed = -1.0;
218 }
219 else if (speed > 1.0)
220 {
221 speed = 1.0;
222 }
223
224 // calculate the desired output pwm value by scaling the speed appropriately
225 INT32 rawValue;
226 if (speed == 0.0)
227 {
228 rawValue = GetCenterPwm();
229 }
230 else if (speed > 0.0)
231 {
232 rawValue = (INT32)(speed * ((float)GetPositiveScaleFactor()) +
233 ((float) GetMinPositivePwm()) + 0.5);
234 }
235 else
236 {
237 rawValue = (INT32)(speed * ((float)GetNegativeScaleFactor()) +
238 ((float) GetMaxNegativePwm()) + 0.5);
239 }
240
241 // the above should result in a pwm_value in the valid range
242 wpi_assert((rawValue >= GetMinNegativePwm()) && (rawValue <= GetMaxPositivePwm()));
243 wpi_assert(rawValue != kPwmDisabled);
244
245 // send the computed pwm value to the FPGA
246 SetRaw((UINT8)rawValue);
247}
248
249/**
250 * Get the PWM value in terms of speed.
251 *
252 * This is intended to be used by speed controllers.
253 *
254 * @pre SetMaxPositivePwm() called.
255 * @pre SetMinPositivePwm() called.
256 * @pre SetMaxNegativePwm() called.
257 * @pre SetMinNegativePwm() called.
258 *
259 * @return The most recently set speed between -1.0 and 1.0.
260 */
261float PWM::GetSpeed()
262{
263 if (StatusIsFatal()) return 0.0;
264 INT32 value = GetRaw();
265 if (value > GetMaxPositivePwm())
266 {
267 return 1.0;
268 }
269 else if (value < GetMinNegativePwm())
270 {
271 return -1.0;
272 }
273 else if (value > GetMinPositivePwm())
274 {
275 return (float)(value - GetMinPositivePwm()) / (float)GetPositiveScaleFactor();
276 }
277 else if (value < GetMaxNegativePwm())
278 {
279 return (float)(value - GetMaxNegativePwm()) / (float)GetNegativeScaleFactor();
280 }
281 else
282 {
283 return 0.0;
284 }
285}
286
287/**
288 * Set the PWM value directly to the hardware.
289 *
290 * Write a raw value to a PWM channel.
291 *
292 * @param value Raw PWM value. Range 0 - 255.
293 */
294void PWM::SetRaw(UINT8 value)
295{
296 if (StatusIsFatal()) return;
297 m_module->SetPWM(m_channel, value);
298}
299
300/**
301 * Get the PWM value directly from the hardware.
302 *
303 * Read a raw value from a PWM channel.
304 *
305 * @return Raw PWM control value. Range: 0 - 255.
306 */
307UINT8 PWM::GetRaw()
308{
309 if (StatusIsFatal()) return 0;
310 return m_module->GetPWM(m_channel);
311}
312
313/**
314 * Slow down the PWM signal for old devices.
315 *
316 * @param mult The period multiplier to apply to this channel
317 */
318void PWM::SetPeriodMultiplier(PeriodMultiplier mult)
319{
320 if (StatusIsFatal()) return;
321 switch(mult)
322 {
323 case kPeriodMultiplier_4X:
324 m_module->SetPWMPeriodScale(m_channel, 3); // Squelch 3 out of 4 outputs
325 break;
326 case kPeriodMultiplier_2X:
327 m_module->SetPWMPeriodScale(m_channel, 1); // Squelch 1 out of 2 outputs
328 break;
329 case kPeriodMultiplier_1X:
330 m_module->SetPWMPeriodScale(m_channel, 0); // Don't squelch any outputs
331 break;
332 default:
333 wpi_assert(false);
334 }
335}
336
337
338void PWM::ValueChanged(ITable* source, const std::string& key, EntryValue value, bool isNew) {
339 SetSpeed(value.f);
340}
341
342void PWM::UpdateTable() {
343 if (m_table != NULL) {
344 m_table->PutNumber("Value", GetSpeed());
345 }
346}
347
348void PWM::StartLiveWindowMode() {
jerrym37afdca2013-03-03 01:17:57 +0000349 if (m_table != NULL) {
350 m_table->AddTableListener("Value", this, true);
351 }
jerrymf1579332013-02-07 01:56:28 +0000352}
353
354void PWM::StopLiveWindowMode() {
355 SetSpeed(0);
jerrym37afdca2013-03-03 01:17:57 +0000356 if (m_table != NULL) {
357 m_table->RemoveTableListener(this);
358 }
jerrymf1579332013-02-07 01:56:28 +0000359}
360
361std::string PWM::GetSmartDashboardType() {
362 return "Speed Controller";
363}
364
365void PWM::InitTable(ITable *subTable) {
366 m_table = subTable;
367 UpdateTable();
368}
369
370ITable * PWM::GetTable() {
371 return m_table;
372}
373