blob: d551667b4b79ad35d937a6d2eb88649492dc18e7 [file] [log] [blame]
Brian Silverman5f17a972016-02-28 01:49:32 -05001#include "frc971/wpilib/ADIS16448.h"
2
3#include "InterruptableSensorBase.h"
4#undef ERROR
5
6#include <inttypes.h>
7#include <math.h>
Austin Schuhf2a50ba2016-12-24 16:16:26 -08008#include <chrono>
Brian Silverman5f17a972016-02-28 01:49:32 -05009
10#include "aos/common/logging/queue_logging.h"
Austin Schuh943fcbd2016-04-03 21:35:41 -070011#include "aos/common/messages/robot_state.q.h"
Brian Silverman5f17a972016-02-28 01:49:32 -050012#include "aos/common/time.h"
13#include "aos/linux_code/init.h"
Brian Silverman5f17a972016-02-28 01:49:32 -050014#include "frc971/wpilib/imu.q.h"
Philipp Schrader29d54f22016-04-02 22:14:48 +000015#include "frc971/zeroing/averager.h"
Brian Silverman5f17a972016-02-28 01:49:32 -050016
17namespace frc971 {
18namespace wpilib {
19
Austin Schuhf2a50ba2016-12-24 16:16:26 -080020using ::aos::monotonic_clock;
21namespace chrono = ::std::chrono;
22
Brian Silverman5f17a972016-02-28 01:49:32 -050023template <uint8_t size>
24bool ADIS16448::DoTransaction(uint8_t to_send[size], uint8_t to_receive[size]) {
25 switch (spi_->Transaction(to_send, to_receive, size)) {
26 case -1:
27 LOG(INFO, "SPI::Transaction of %zd bytes failed\n", size);
28 return false;
29 case size:
30 return true;
31 default:
32 LOG(FATAL, "SPI::Transaction returned something weird\n");
33 }
34}
35
36namespace {
37
38// Addresses pulled out of the documentation.
39constexpr uint8_t kMscCtrlAddress = 0x34;
40constexpr uint8_t kSmplPrdAddress = 0x36;
41constexpr uint8_t kDiagStatAddress = 0x3C;
42constexpr uint8_t kGlobalReadAddress = 0x3E;
43constexpr uint8_t kLotId1Address = 0x52;
44constexpr uint8_t kLotId2Address = 0x54;
45constexpr uint8_t kProdIdAddress = 0x56;
46constexpr uint8_t kSerialNumberAddress = 0x58;
47
Austin Schuh871a1362016-04-02 12:25:00 -070048// degree/second/LSB for the gyros.
49constexpr double kGyroLsbDegreeSecond = 1.0 / 25.0;
50// G/LSB for the accelerometers.
51constexpr double kAccelerometerLsbG = 1.0 / 1200.0;
52// gauss/LSB for the magnetometers.
53constexpr double kMagnetometerLsbGauss =
54 1.0 / (7.0 / 1000.0) /* mgauss to gauss */;
55// bar/LSB for the barometer.
56constexpr double kBarometerLsbPascal = 0.02 * 100;
57// degree/LSB C for the temperature sensor.
58constexpr double kTemperatureLsbDegree = 0.07386;
Brian Silverman5f17a972016-02-28 01:49:32 -050059// Degrees C corresponding to 0 for the temperature sensor.
60constexpr double kTemperatureZero = 31;
61
62// From somebody online who says this works with the sensor. I don't feel like
63// re-deriving this, and I can't find what all the CRC parameters are supposed
64// to be.
65const uint16_t kCrcTable[256] = {
66 0x0000, 0x17CE, 0x0FDF, 0x1811, 0x1FBE, 0x0870, 0x1061, 0x07AF, 0x1F3F,
67 0x08F1, 0x10E0, 0x072E, 0x0081, 0x174F, 0x0F5E, 0x1890, 0x1E3D, 0x09F3,
68 0x11E2, 0x062C, 0x0183, 0x164D, 0x0E5C, 0x1992, 0x0102, 0x16CC, 0x0EDD,
69 0x1913, 0x1EBC, 0x0972, 0x1163, 0x06AD, 0x1C39, 0x0BF7, 0x13E6, 0x0428,
70 0x0387, 0x1449, 0x0C58, 0x1B96, 0x0306, 0x14C8, 0x0CD9, 0x1B17, 0x1CB8,
71 0x0B76, 0x1367, 0x04A9, 0x0204, 0x15CA, 0x0DDB, 0x1A15, 0x1DBA, 0x0A74,
72 0x1265, 0x05AB, 0x1D3B, 0x0AF5, 0x12E4, 0x052A, 0x0285, 0x154B, 0x0D5A,
73 0x1A94, 0x1831, 0x0FFF, 0x17EE, 0x0020, 0x078F, 0x1041, 0x0850, 0x1F9E,
74 0x070E, 0x10C0, 0x08D1, 0x1F1F, 0x18B0, 0x0F7E, 0x176F, 0x00A1, 0x060C,
75 0x11C2, 0x09D3, 0x1E1D, 0x19B2, 0x0E7C, 0x166D, 0x01A3, 0x1933, 0x0EFD,
76 0x16EC, 0x0122, 0x068D, 0x1143, 0x0952, 0x1E9C, 0x0408, 0x13C6, 0x0BD7,
77 0x1C19, 0x1BB6, 0x0C78, 0x1469, 0x03A7, 0x1B37, 0x0CF9, 0x14E8, 0x0326,
78 0x0489, 0x1347, 0x0B56, 0x1C98, 0x1A35, 0x0DFB, 0x15EA, 0x0224, 0x058B,
79 0x1245, 0x0A54, 0x1D9A, 0x050A, 0x12C4, 0x0AD5, 0x1D1B, 0x1AB4, 0x0D7A,
80 0x156B, 0x02A5, 0x1021, 0x07EF, 0x1FFE, 0x0830, 0x0F9F, 0x1851, 0x0040,
81 0x178E, 0x0F1E, 0x18D0, 0x00C1, 0x170F, 0x10A0, 0x076E, 0x1F7F, 0x08B1,
82 0x0E1C, 0x19D2, 0x01C3, 0x160D, 0x11A2, 0x066C, 0x1E7D, 0x09B3, 0x1123,
83 0x06ED, 0x1EFC, 0x0932, 0x0E9D, 0x1953, 0x0142, 0x168C, 0x0C18, 0x1BD6,
84 0x03C7, 0x1409, 0x13A6, 0x0468, 0x1C79, 0x0BB7, 0x1327, 0x04E9, 0x1CF8,
85 0x0B36, 0x0C99, 0x1B57, 0x0346, 0x1488, 0x1225, 0x05EB, 0x1DFA, 0x0A34,
86 0x0D9B, 0x1A55, 0x0244, 0x158A, 0x0D1A, 0x1AD4, 0x02C5, 0x150B, 0x12A4,
87 0x056A, 0x1D7B, 0x0AB5, 0x0810, 0x1FDE, 0x07CF, 0x1001, 0x17AE, 0x0060,
88 0x1871, 0x0FBF, 0x172F, 0x00E1, 0x18F0, 0x0F3E, 0x0891, 0x1F5F, 0x074E,
89 0x1080, 0x162D, 0x01E3, 0x19F2, 0x0E3C, 0x0993, 0x1E5D, 0x064C, 0x1182,
90 0x0912, 0x1EDC, 0x06CD, 0x1103, 0x16AC, 0x0162, 0x1973, 0x0EBD, 0x1429,
91 0x03E7, 0x1BF6, 0x0C38, 0x0B97, 0x1C59, 0x0448, 0x1386, 0x0B16, 0x1CD8,
92 0x04C9, 0x1307, 0x14A8, 0x0366, 0x1B77, 0x0CB9, 0x0A14, 0x1DDA, 0x05CB,
93 0x1205, 0x15AA, 0x0264, 0x1A75, 0x0DBB, 0x152B, 0x02E5, 0x1AF4, 0x0D3A,
94 0x0A95, 0x1D5B, 0x054A, 0x1284};
95
96uint16_t CalculateCrc(const uint8_t *data, size_t data_length) {
97 uint16_t crc = 0xFFFF;
98 uint16_t byte;
99
100 while (data_length--) {
101 // Compute lower byte CRC first.
102 byte = data[1];
103 crc = (crc >> 8) ^ kCrcTable[(crc & 0x00FF) ^ byte];
104 // Compute upper byte of CRC.
105 byte = data[0];
106 crc = (crc >> 8) ^ kCrcTable[(crc & 0x00FF) ^ byte];
107 data += 2;
108 }
109 crc = ~crc; // Compute complement of CRC
110 return static_cast<uint16_t>(
111 (crc << 8) | (crc >> 8)); // Perform byte swap prior to returning CRC;
112}
113
114} // namespace
115
116ADIS16448::ADIS16448(SPI::Port port, DigitalInput *dio1)
117 : spi_(new SPI(port)), dio1_(dio1) {
118 // 1MHz is the maximum supported for burst reads.
119 spi_->SetClockRate(1e6);
120 spi_->SetChipSelectActiveLow();
121 spi_->SetClockActiveLow();
122 spi_->SetSampleDataOnFalling();
123 spi_->SetMSBFirst();
124
125 dio1_->RequestInterrupts();
126 dio1_->SetUpSourceEdge(true, false);
127}
128
129void ADIS16448::operator()() {
Austin Schuhf266db52017-03-05 22:27:50 -0800130 // NI's SPI driver defaults to SCHED_OTHER. Find it's PID with ps, and change
131 // it to a RT priority of 33.
132 PCHECK(system(
133 "ps -ef | grep '\\[spi0\\]' | awk '{print $1}' | xargs chrt -f -p "
134 "33") == 0);
135
Brian Silverman5f17a972016-02-28 01:49:32 -0500136 ::aos::SetCurrentThreadName("IMU");
137
138 // Try to initialize repeatedly as long as we're supposed to be running.
139 while (run_ && !Initialize()) {
Austin Schuhf2a50ba2016-12-24 16:16:26 -0800140 ::std::this_thread::sleep_for(::std::chrono::milliseconds(50));
Brian Silverman5f17a972016-02-28 01:49:32 -0500141 }
142 LOG(INFO, "IMU initialized successfully\n");
143
Austin Schuhf266db52017-03-05 22:27:50 -0800144 ::aos::SetCurrentThreadRealtimePriority(33);
145
Philipp Schrader29d54f22016-04-02 22:14:48 +0000146 // Rounded to approximate the 204.8 Hz.
147 constexpr size_t kImuSendRate = 205;
148
149 zeroing::Averager<double, 6 * kImuSendRate> average_gyro_x;
150 zeroing::Averager<double, 6 * kImuSendRate> average_gyro_y;
151 zeroing::Averager<double, 6 * kImuSendRate> average_gyro_z;
152
Brian Silverman5f17a972016-02-28 01:49:32 -0500153 bool got_an_interrupt = false;
154 while (run_) {
155 {
156 const InterruptableSensorBase::WaitResult result =
157 dio1_->WaitForInterrupt(0.1, !got_an_interrupt);
158 if (result == InterruptableSensorBase::kTimeout) {
159 LOG(WARNING, "IMU read timed out\n");
160 continue;
161 }
162 }
163 got_an_interrupt = true;
Austin Schuhf2a50ba2016-12-24 16:16:26 -0800164 const monotonic_clock::time_point read_time = monotonic_clock::now();
Brian Silverman5f17a972016-02-28 01:49:32 -0500165
Austin Schuh871a1362016-04-02 12:25:00 -0700166 uint8_t to_send[2 * 14], to_receive[2 * 14];
167 memset(&to_send[0], 0, sizeof(to_send));
Brian Silverman5f17a972016-02-28 01:49:32 -0500168 to_send[0] = kGlobalReadAddress;
Austin Schuh871a1362016-04-02 12:25:00 -0700169 if (!DoTransaction<2 * 14>(to_send, to_receive)) continue;
Brian Silverman5f17a972016-02-28 01:49:32 -0500170
171 // If it's false now or another edge happened, then we're in trouble. This
172 // won't catch all instances of being a little bit slow (because of the
173 // interrupt delay among other things), but it will catch the code
174 // constantly falling behind, which seems like the most likely failure
175 // scenario.
176 if (!dio1_->Get() ||
177 dio1_->WaitForInterrupt(0, false) !=
178 InterruptableSensorBase::kTimeout) {
179 LOG(ERROR, "IMU read took too long\n");
180 continue;
181 }
182
183 {
184 const uint16_t calculated_crc = CalculateCrc(&to_receive[4], 11);
Austin Schuh871a1362016-04-02 12:25:00 -0700185 uint16_t received_crc =
186 to_receive[13 * 2 + 1] | (to_receive[13 * 2] << 8);
Brian Silverman5f17a972016-02-28 01:49:32 -0500187 if (received_crc != calculated_crc) {
188 LOG(WARNING, "received CRC %" PRIx16 " but calculated %" PRIx16 "\n",
189 received_crc, calculated_crc);
190 continue;
191 }
192 }
193
194 {
195 uint16_t diag_stat;
Austin Schuh871a1362016-04-02 12:25:00 -0700196 memcpy(&diag_stat, &to_receive[2], 2);
Brian Silverman5f17a972016-02-28 01:49:32 -0500197 if (!CheckDiagStatValue(diag_stat)) continue;
198 }
199
200 auto message = imu_values.MakeMessage();
201 message->fpga_timestamp = dio1_->ReadRisingTimestamp();
Austin Schuhf2a50ba2016-12-24 16:16:26 -0800202 message->monotonic_timestamp_ns =
203 chrono::duration_cast<chrono::nanoseconds>(read_time.time_since_epoch())
204 .count();
Brian Silverman5f17a972016-02-28 01:49:32 -0500205
206 message->gyro_x =
Austin Schuh871a1362016-04-02 12:25:00 -0700207 ConvertValue(&to_receive[4], kGyroLsbDegreeSecond * M_PI / 180.0);
Brian Silverman5f17a972016-02-28 01:49:32 -0500208 message->gyro_y =
Austin Schuh871a1362016-04-02 12:25:00 -0700209 ConvertValue(&to_receive[6], kGyroLsbDegreeSecond * M_PI / 180.0);
Brian Silverman5f17a972016-02-28 01:49:32 -0500210 message->gyro_z =
Austin Schuh871a1362016-04-02 12:25:00 -0700211 ConvertValue(&to_receive[8], kGyroLsbDegreeSecond * M_PI / 180.0);
Brian Silverman5f17a972016-02-28 01:49:32 -0500212
Philipp Schrader29d54f22016-04-02 22:14:48 +0000213 // The first few seconds of samples are averaged and subtracted from
214 // subsequent samples for zeroing purposes.
Austin Schuh943fcbd2016-04-03 21:35:41 -0700215 if (!gyros_are_zeroed_) {
Philipp Schrader29d54f22016-04-02 22:14:48 +0000216 average_gyro_x.AddData(message->gyro_x);
217 average_gyro_y.AddData(message->gyro_y);
218 average_gyro_z.AddData(message->gyro_z);
219
220 if (average_gyro_x.full() && average_gyro_y.full() &&
221 average_gyro_z.full()) {
Austin Schuh943fcbd2016-04-03 21:35:41 -0700222 ::aos::joystick_state.FetchLatest();
223 if (::aos::joystick_state.get() && ::aos::joystick_state->enabled) {
224 gyro_x_zeroed_offset_ = -average_gyro_x.GetAverage();
225 gyro_y_zeroed_offset_ = -average_gyro_y.GetAverage();
226 gyro_z_zeroed_offset_ = -average_gyro_z.GetAverage();
227 LOG(INFO, "total gyro zero offset X:%f, Y:%f, Z:%f\n",
228 gyro_x_zeroed_offset_, gyro_y_zeroed_offset_,
229 gyro_z_zeroed_offset_);
230 gyros_are_zeroed_ = true;
231 }
Philipp Schrader29d54f22016-04-02 22:14:48 +0000232 }
233 }
234
Austin Schuh943fcbd2016-04-03 21:35:41 -0700235 message->gyro_x += gyro_x_zeroed_offset_;
236 message->gyro_y += gyro_y_zeroed_offset_;
237 message->gyro_z += gyro_z_zeroed_offset_;
238
Austin Schuh871a1362016-04-02 12:25:00 -0700239 message->accelerometer_x =
240 ConvertValue(&to_receive[10], kAccelerometerLsbG);
241 message->accelerometer_y =
242 ConvertValue(&to_receive[12], kAccelerometerLsbG);
243 message->accelerometer_z =
244 ConvertValue(&to_receive[14], kAccelerometerLsbG);
Brian Silverman5f17a972016-02-28 01:49:32 -0500245
246 message->magnetometer_x =
Austin Schuh871a1362016-04-02 12:25:00 -0700247 ConvertValue(&to_receive[16], kMagnetometerLsbGauss);
Brian Silverman5f17a972016-02-28 01:49:32 -0500248 message->magnetometer_y =
Austin Schuh871a1362016-04-02 12:25:00 -0700249 ConvertValue(&to_receive[18], kMagnetometerLsbGauss);
Brian Silverman5f17a972016-02-28 01:49:32 -0500250 message->magnetometer_z =
Austin Schuh871a1362016-04-02 12:25:00 -0700251 ConvertValue(&to_receive[20], kMagnetometerLsbGauss);
Brian Silverman5f17a972016-02-28 01:49:32 -0500252
253 message->barometer =
Austin Schuh871a1362016-04-02 12:25:00 -0700254 ConvertValue(&to_receive[22], kBarometerLsbPascal, false);
Brian Silverman5f17a972016-02-28 01:49:32 -0500255
256 message->temperature =
Austin Schuh871a1362016-04-02 12:25:00 -0700257 ConvertValue(&to_receive[24], kTemperatureLsbDegree) + kTemperatureZero;
Brian Silverman5f17a972016-02-28 01:49:32 -0500258
259 LOG_STRUCT(DEBUG, "sending", *message);
260 if (!message.Send()) {
261 LOG(WARNING, "sending queue message failed\n");
262 }
263 }
264}
265
266float ADIS16448::ConvertValue(uint8_t *data, double lsb_per_output, bool sign) {
267 double value;
268 if (sign) {
Austin Schuh871a1362016-04-02 12:25:00 -0700269 int16_t raw_value = static_cast<int16_t>(
270 (static_cast<uint16_t>(data[0]) << 8) | static_cast<uint16_t>(data[1]));
Brian Silverman5f17a972016-02-28 01:49:32 -0500271 value = raw_value;
272 } else {
Austin Schuh871a1362016-04-02 12:25:00 -0700273 uint16_t raw_value =
274 (static_cast<uint16_t>(data[0]) << 8) | static_cast<uint16_t>(data[1]);
Brian Silverman5f17a972016-02-28 01:49:32 -0500275 value = raw_value;
276 }
277 return value * lsb_per_output;
278}
279
280bool ADIS16448::ReadRegister(uint8_t next_address, uint16_t *value) {
281 uint8_t to_send[2], to_receive[2];
282 to_send[0] = next_address;
283 to_send[1] = 0;
284
285 if (!DoTransaction<2>(to_send, to_receive)) return false;
286
Austin Schuh871a1362016-04-02 12:25:00 -0700287 if (value) {
288 memcpy(value, to_receive, 2);
289 }
Brian Silverman5f17a972016-02-28 01:49:32 -0500290 return true;
291}
292
293bool ADIS16448::WriteRegister(uint8_t address, uint16_t value) {
294 uint8_t to_send[4], to_receive[4];
295 to_send[0] = address | 0x80;
296 to_send[1] = value & 0xFF;
297 to_send[2] = address | 0x81;
298 to_send[3] = value >> 8;
299 if (!DoTransaction<4>(to_send, to_receive)) return false;
300 return true;
301}
302
303bool ADIS16448::CheckDiagStatValue(uint16_t value) const {
304 bool r = true;
Brian Silverman5f17a972016-02-28 01:49:32 -0500305 if (value & (1 << 2)) {
306 LOG(WARNING, "IMU gave flash update failure\n");
307 }
308 if (value & (1 << 3)) {
309 LOG(WARNING, "IMU gave SPI communication failure\n");
310 }
311 if (value & (1 << 4)) {
312 LOG(WARNING, "IMU gave sensor overrange\n");
313 }
314 if (value & (1 << 5)) {
315 LOG(WARNING, "IMU gave self-test failure\n");
316 r = false;
Austin Schuh871a1362016-04-02 12:25:00 -0700317 if (value & (1 << 10)) {
318 LOG(WARNING, "IMU gave X-axis gyro self-test failure\n");
319 }
320 if (value & (1 << 11)) {
321 LOG(WARNING, "IMU gave Y-axis gyro self-test failure\n");
322 }
323 if (value & (1 << 12)) {
324 LOG(WARNING, "IMU gave Z-axis gyro self-test failure\n");
325 }
326 if (value & (1 << 13)) {
327 LOG(WARNING, "IMU gave X-axis accelerometer self-test failure\n");
328 }
329 if (value & (1 << 14)) {
330 LOG(WARNING, "IMU gave Y-axis accelerometer self-test failure\n");
331 }
332 if (value & (1 << 15)) {
333 LOG(WARNING, "IMU gave Z-axis accelerometer self-test failure, %x\n",
334 value);
335 }
336 if (value & (1 << 0)) {
337 LOG(WARNING, "IMU gave magnetometer functional test failure\n");
338 }
339 if (value & (1 << 1)) {
340 LOG(WARNING, "IMU gave barometer functional test failure\n");
341 }
Brian Silverman5f17a972016-02-28 01:49:32 -0500342 }
343 if (value & (1 << 6)) {
344 LOG(WARNING, "IMU gave flash test checksum failure\n");
345 }
346 if (value & (1 << 8)) {
347 LOG(WARNING, "IMU says alarm 1 is active\n");
348 }
349 if (value & (1 << 9)) {
350 LOG(WARNING, "IMU says alarm 2 is active\n");
351 }
Brian Silverman5f17a972016-02-28 01:49:32 -0500352 return r;
353}
354
355bool ADIS16448::Initialize() {
356 if (!ReadRegister(kProdIdAddress, nullptr)) return false;
357 uint16_t product_id;
358 if (!ReadRegister(kLotId1Address, &product_id)) return false;
359 if (product_id != 0x4040) {
360 LOG(ERROR, "product ID is %" PRIx16 " instead of 0x4040\n", product_id);
361 return false;
362 }
363
364 uint16_t lot_id1, lot_id2, serial_number;
365 if (!ReadRegister(kLotId2Address, &lot_id1)) return false;
366 if (!ReadRegister(kSerialNumberAddress, &lot_id2)) return false;
367 if (!ReadRegister(0, &serial_number)) return false;
368 LOG(INFO, "have IMU %" PRIx16 "%" PRIx16 ": %" PRIx16 "\n", lot_id1, lot_id2,
369 serial_number);
370
371 // Divide the sampling by 2^2 = 4 to get 819.2 / 4 = 204.8 Hz.
Austin Schuh871a1362016-04-02 12:25:00 -0700372 if (!WriteRegister(kSmplPrdAddress, (2 << 8) | 1)) return false;
Brian Silverman5f17a972016-02-28 01:49:32 -0500373
374 // Start a self test.
375 if (!WriteRegister(kMscCtrlAddress, 1 << 10)) return false;
376 // Wait for the self test to finish.
377 {
378 uint16_t value;
379 do {
Austin Schuhf2a50ba2016-12-24 16:16:26 -0800380 ::std::this_thread::sleep_for(::std::chrono::milliseconds(10));
Brian Silverman5f17a972016-02-28 01:49:32 -0500381 if (!ReadRegister(kMscCtrlAddress, &value)) return false;
382 } while ((value & (1 << 10)) != 0);
383 }
384
385 if (!ReadRegister(kDiagStatAddress, nullptr)) return false;
386 uint16_t diag_stat;
387 if (!ReadRegister(0, &diag_stat)) return false;
388 if (!CheckDiagStatValue(diag_stat)) return false;
389
390 if (!WriteRegister(kMscCtrlAddress,
391 ((0 << 0) | // DIO1
392 (1 << 1) | // DIO goes high when data is valid
393 (1 << 2) | // enable DIO changing when data is vald
Austin Schuh871a1362016-04-02 12:25:00 -0700394 (1 << 4) | // enable CRC16 for burst mode
395 (1 << 6)))) {
Brian Silverman5f17a972016-02-28 01:49:32 -0500396 return false;
397 }
398 return true;
399}
400
401} // namespace wpilib
402} // namespace frc971