Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame^] | 1 | // Copyright 2017 The Abseil Authors. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #include "absl/time/time.h" |
| 16 | |
| 17 | #if defined(_MSC_VER) |
| 18 | #include <winsock2.h> // for timeval |
| 19 | #endif |
| 20 | |
| 21 | #include <chrono> // NOLINT(build/c++11) |
| 22 | #include <cstring> |
| 23 | #include <ctime> |
| 24 | #include <iomanip> |
| 25 | #include <limits> |
| 26 | #include <string> |
| 27 | |
| 28 | #include "gmock/gmock.h" |
| 29 | #include "gtest/gtest.h" |
| 30 | #include "absl/time/clock.h" |
| 31 | #include "absl/time/internal/test_util.h" |
| 32 | |
| 33 | namespace { |
| 34 | |
| 35 | #if defined(GTEST_USES_SIMPLE_RE) && GTEST_USES_SIMPLE_RE |
| 36 | const char kZoneAbbrRE[] = ".*"; // just punt |
| 37 | #else |
| 38 | const char kZoneAbbrRE[] = "[A-Za-z]{3,4}|[-+][0-9]{2}([0-9]{2})?"; |
| 39 | #endif |
| 40 | |
| 41 | // This helper is a macro so that failed expectations show up with the |
| 42 | // correct line numbers. |
| 43 | #define EXPECT_CIVIL_INFO(ci, y, m, d, h, min, s, off, isdst) \ |
| 44 | do { \ |
| 45 | EXPECT_EQ(y, ci.cs.year()); \ |
| 46 | EXPECT_EQ(m, ci.cs.month()); \ |
| 47 | EXPECT_EQ(d, ci.cs.day()); \ |
| 48 | EXPECT_EQ(h, ci.cs.hour()); \ |
| 49 | EXPECT_EQ(min, ci.cs.minute()); \ |
| 50 | EXPECT_EQ(s, ci.cs.second()); \ |
| 51 | EXPECT_EQ(off, ci.offset); \ |
| 52 | EXPECT_EQ(isdst, ci.is_dst); \ |
| 53 | EXPECT_THAT(ci.zone_abbr, testing::MatchesRegex(kZoneAbbrRE)); \ |
| 54 | } while (0) |
| 55 | |
| 56 | // A gMock matcher to match timespec values. Use this matcher like: |
| 57 | // timespec ts1, ts2; |
| 58 | // EXPECT_THAT(ts1, TimespecMatcher(ts2)); |
| 59 | MATCHER_P(TimespecMatcher, ts, "") { |
| 60 | if (ts.tv_sec == arg.tv_sec && ts.tv_nsec == arg.tv_nsec) |
| 61 | return true; |
| 62 | *result_listener << "expected: {" << ts.tv_sec << ", " << ts.tv_nsec << "} "; |
| 63 | *result_listener << "actual: {" << arg.tv_sec << ", " << arg.tv_nsec << "}"; |
| 64 | return false; |
| 65 | } |
| 66 | |
| 67 | // A gMock matcher to match timeval values. Use this matcher like: |
| 68 | // timeval tv1, tv2; |
| 69 | // EXPECT_THAT(tv1, TimevalMatcher(tv2)); |
| 70 | MATCHER_P(TimevalMatcher, tv, "") { |
| 71 | if (tv.tv_sec == arg.tv_sec && tv.tv_usec == arg.tv_usec) |
| 72 | return true; |
| 73 | *result_listener << "expected: {" << tv.tv_sec << ", " << tv.tv_usec << "} "; |
| 74 | *result_listener << "actual: {" << arg.tv_sec << ", " << arg.tv_usec << "}"; |
| 75 | return false; |
| 76 | } |
| 77 | |
| 78 | TEST(Time, ConstExpr) { |
| 79 | constexpr absl::Time t0 = absl::UnixEpoch(); |
| 80 | static_assert(t0 == absl::Time(), "UnixEpoch"); |
| 81 | constexpr absl::Time t1 = absl::InfiniteFuture(); |
| 82 | static_assert(t1 != absl::Time(), "InfiniteFuture"); |
| 83 | constexpr absl::Time t2 = absl::InfinitePast(); |
| 84 | static_assert(t2 != absl::Time(), "InfinitePast"); |
| 85 | constexpr absl::Time t3 = absl::FromUnixNanos(0); |
| 86 | static_assert(t3 == absl::Time(), "FromUnixNanos"); |
| 87 | constexpr absl::Time t4 = absl::FromUnixMicros(0); |
| 88 | static_assert(t4 == absl::Time(), "FromUnixMicros"); |
| 89 | constexpr absl::Time t5 = absl::FromUnixMillis(0); |
| 90 | static_assert(t5 == absl::Time(), "FromUnixMillis"); |
| 91 | constexpr absl::Time t6 = absl::FromUnixSeconds(0); |
| 92 | static_assert(t6 == absl::Time(), "FromUnixSeconds"); |
| 93 | constexpr absl::Time t7 = absl::FromTimeT(0); |
| 94 | static_assert(t7 == absl::Time(), "FromTimeT"); |
| 95 | } |
| 96 | |
| 97 | TEST(Time, ValueSemantics) { |
| 98 | absl::Time a; // Default construction |
| 99 | absl::Time b = a; // Copy construction |
| 100 | EXPECT_EQ(a, b); |
| 101 | absl::Time c(a); // Copy construction (again) |
| 102 | EXPECT_EQ(a, b); |
| 103 | EXPECT_EQ(a, c); |
| 104 | EXPECT_EQ(b, c); |
| 105 | b = c; // Assignment |
| 106 | EXPECT_EQ(a, b); |
| 107 | EXPECT_EQ(a, c); |
| 108 | EXPECT_EQ(b, c); |
| 109 | } |
| 110 | |
| 111 | TEST(Time, UnixEpoch) { |
| 112 | const auto ci = absl::UTCTimeZone().At(absl::UnixEpoch()); |
| 113 | EXPECT_EQ(absl::CivilSecond(1970, 1, 1, 0, 0, 0), ci.cs); |
| 114 | EXPECT_EQ(absl::ZeroDuration(), ci.subsecond); |
| 115 | EXPECT_EQ(absl::Weekday::thursday, absl::GetWeekday(ci.cs)); |
| 116 | } |
| 117 | |
| 118 | TEST(Time, Breakdown) { |
| 119 | absl::TimeZone tz = absl::time_internal::LoadTimeZone("America/New_York"); |
| 120 | absl::Time t = absl::UnixEpoch(); |
| 121 | |
| 122 | // The Unix epoch as seen in NYC. |
| 123 | auto ci = tz.At(t); |
| 124 | EXPECT_CIVIL_INFO(ci, 1969, 12, 31, 19, 0, 0, -18000, false); |
| 125 | EXPECT_EQ(absl::ZeroDuration(), ci.subsecond); |
| 126 | EXPECT_EQ(absl::Weekday::wednesday, absl::GetWeekday(ci.cs)); |
| 127 | |
| 128 | // Just before the epoch. |
| 129 | t -= absl::Nanoseconds(1); |
| 130 | ci = tz.At(t); |
| 131 | EXPECT_CIVIL_INFO(ci, 1969, 12, 31, 18, 59, 59, -18000, false); |
| 132 | EXPECT_EQ(absl::Nanoseconds(999999999), ci.subsecond); |
| 133 | EXPECT_EQ(absl::Weekday::wednesday, absl::GetWeekday(ci.cs)); |
| 134 | |
| 135 | // Some time later. |
| 136 | t += absl::Hours(24) * 2735; |
| 137 | t += absl::Hours(18) + absl::Minutes(30) + absl::Seconds(15) + |
| 138 | absl::Nanoseconds(9); |
| 139 | ci = tz.At(t); |
| 140 | EXPECT_CIVIL_INFO(ci, 1977, 6, 28, 14, 30, 15, -14400, true); |
| 141 | EXPECT_EQ(8, ci.subsecond / absl::Nanoseconds(1)); |
| 142 | EXPECT_EQ(absl::Weekday::tuesday, absl::GetWeekday(ci.cs)); |
| 143 | } |
| 144 | |
| 145 | TEST(Time, AdditiveOperators) { |
| 146 | const absl::Duration d = absl::Nanoseconds(1); |
| 147 | const absl::Time t0; |
| 148 | const absl::Time t1 = t0 + d; |
| 149 | |
| 150 | EXPECT_EQ(d, t1 - t0); |
| 151 | EXPECT_EQ(-d, t0 - t1); |
| 152 | EXPECT_EQ(t0, t1 - d); |
| 153 | |
| 154 | absl::Time t(t0); |
| 155 | EXPECT_EQ(t0, t); |
| 156 | t += d; |
| 157 | EXPECT_EQ(t0 + d, t); |
| 158 | EXPECT_EQ(d, t - t0); |
| 159 | t -= d; |
| 160 | EXPECT_EQ(t0, t); |
| 161 | |
| 162 | // Tests overflow between subseconds and seconds. |
| 163 | t = absl::UnixEpoch(); |
| 164 | t += absl::Milliseconds(500); |
| 165 | EXPECT_EQ(absl::UnixEpoch() + absl::Milliseconds(500), t); |
| 166 | t += absl::Milliseconds(600); |
| 167 | EXPECT_EQ(absl::UnixEpoch() + absl::Milliseconds(1100), t); |
| 168 | t -= absl::Milliseconds(600); |
| 169 | EXPECT_EQ(absl::UnixEpoch() + absl::Milliseconds(500), t); |
| 170 | t -= absl::Milliseconds(500); |
| 171 | EXPECT_EQ(absl::UnixEpoch(), t); |
| 172 | } |
| 173 | |
| 174 | TEST(Time, RelationalOperators) { |
| 175 | constexpr absl::Time t1 = absl::FromUnixNanos(0); |
| 176 | constexpr absl::Time t2 = absl::FromUnixNanos(1); |
| 177 | constexpr absl::Time t3 = absl::FromUnixNanos(2); |
| 178 | |
| 179 | static_assert(absl::Time() == t1, ""); |
| 180 | static_assert(t1 == t1, ""); |
| 181 | static_assert(t2 == t2, ""); |
| 182 | static_assert(t3 == t3, ""); |
| 183 | |
| 184 | static_assert(t1 < t2, ""); |
| 185 | static_assert(t2 < t3, ""); |
| 186 | static_assert(t1 < t3, ""); |
| 187 | |
| 188 | static_assert(t1 <= t1, ""); |
| 189 | static_assert(t1 <= t2, ""); |
| 190 | static_assert(t2 <= t2, ""); |
| 191 | static_assert(t2 <= t3, ""); |
| 192 | static_assert(t3 <= t3, ""); |
| 193 | static_assert(t1 <= t3, ""); |
| 194 | |
| 195 | static_assert(t2 > t1, ""); |
| 196 | static_assert(t3 > t2, ""); |
| 197 | static_assert(t3 > t1, ""); |
| 198 | |
| 199 | static_assert(t2 >= t2, ""); |
| 200 | static_assert(t2 >= t1, ""); |
| 201 | static_assert(t3 >= t3, ""); |
| 202 | static_assert(t3 >= t2, ""); |
| 203 | static_assert(t1 >= t1, ""); |
| 204 | static_assert(t3 >= t1, ""); |
| 205 | } |
| 206 | |
| 207 | TEST(Time, Infinity) { |
| 208 | constexpr absl::Time ifuture = absl::InfiniteFuture(); |
| 209 | constexpr absl::Time ipast = absl::InfinitePast(); |
| 210 | |
| 211 | static_assert(ifuture == ifuture, ""); |
| 212 | static_assert(ipast == ipast, ""); |
| 213 | static_assert(ipast < ifuture, ""); |
| 214 | static_assert(ifuture > ipast, ""); |
| 215 | |
| 216 | // Arithmetic saturates |
| 217 | EXPECT_EQ(ifuture, ifuture + absl::Seconds(1)); |
| 218 | EXPECT_EQ(ifuture, ifuture - absl::Seconds(1)); |
| 219 | EXPECT_EQ(ipast, ipast + absl::Seconds(1)); |
| 220 | EXPECT_EQ(ipast, ipast - absl::Seconds(1)); |
| 221 | |
| 222 | EXPECT_EQ(absl::InfiniteDuration(), ifuture - ifuture); |
| 223 | EXPECT_EQ(absl::InfiniteDuration(), ifuture - ipast); |
| 224 | EXPECT_EQ(-absl::InfiniteDuration(), ipast - ifuture); |
| 225 | EXPECT_EQ(-absl::InfiniteDuration(), ipast - ipast); |
| 226 | |
| 227 | constexpr absl::Time t = absl::UnixEpoch(); // Any finite time. |
| 228 | static_assert(t < ifuture, ""); |
| 229 | static_assert(t > ipast, ""); |
| 230 | } |
| 231 | |
| 232 | TEST(Time, FloorConversion) { |
| 233 | #define TEST_FLOOR_CONVERSION(TO, FROM) \ |
| 234 | EXPECT_EQ(1, TO(FROM(1001))); \ |
| 235 | EXPECT_EQ(1, TO(FROM(1000))); \ |
| 236 | EXPECT_EQ(0, TO(FROM(999))); \ |
| 237 | EXPECT_EQ(0, TO(FROM(1))); \ |
| 238 | EXPECT_EQ(0, TO(FROM(0))); \ |
| 239 | EXPECT_EQ(-1, TO(FROM(-1))); \ |
| 240 | EXPECT_EQ(-1, TO(FROM(-999))); \ |
| 241 | EXPECT_EQ(-1, TO(FROM(-1000))); \ |
| 242 | EXPECT_EQ(-2, TO(FROM(-1001))); |
| 243 | |
| 244 | TEST_FLOOR_CONVERSION(absl::ToUnixMicros, absl::FromUnixNanos); |
| 245 | TEST_FLOOR_CONVERSION(absl::ToUnixMillis, absl::FromUnixMicros); |
| 246 | TEST_FLOOR_CONVERSION(absl::ToUnixSeconds, absl::FromUnixMillis); |
| 247 | TEST_FLOOR_CONVERSION(absl::ToTimeT, absl::FromUnixMillis); |
| 248 | |
| 249 | #undef TEST_FLOOR_CONVERSION |
| 250 | |
| 251 | // Tests ToUnixNanos. |
| 252 | EXPECT_EQ(1, absl::ToUnixNanos(absl::UnixEpoch() + absl::Nanoseconds(3) / 2)); |
| 253 | EXPECT_EQ(1, absl::ToUnixNanos(absl::UnixEpoch() + absl::Nanoseconds(1))); |
| 254 | EXPECT_EQ(0, absl::ToUnixNanos(absl::UnixEpoch() + absl::Nanoseconds(1) / 2)); |
| 255 | EXPECT_EQ(0, absl::ToUnixNanos(absl::UnixEpoch() + absl::Nanoseconds(0))); |
| 256 | EXPECT_EQ(-1, |
| 257 | absl::ToUnixNanos(absl::UnixEpoch() - absl::Nanoseconds(1) / 2)); |
| 258 | EXPECT_EQ(-1, absl::ToUnixNanos(absl::UnixEpoch() - absl::Nanoseconds(1))); |
| 259 | EXPECT_EQ(-2, |
| 260 | absl::ToUnixNanos(absl::UnixEpoch() - absl::Nanoseconds(3) / 2)); |
| 261 | |
| 262 | // Tests ToUniversal, which uses a different epoch than the tests above. |
| 263 | EXPECT_EQ(1, |
| 264 | absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(101))); |
| 265 | EXPECT_EQ(1, |
| 266 | absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(100))); |
| 267 | EXPECT_EQ(0, |
| 268 | absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(99))); |
| 269 | EXPECT_EQ(0, |
| 270 | absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(1))); |
| 271 | EXPECT_EQ(0, |
| 272 | absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(0))); |
| 273 | EXPECT_EQ(-1, |
| 274 | absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-1))); |
| 275 | EXPECT_EQ(-1, |
| 276 | absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-99))); |
| 277 | EXPECT_EQ( |
| 278 | -1, absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-100))); |
| 279 | EXPECT_EQ( |
| 280 | -2, absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-101))); |
| 281 | |
| 282 | // Tests ToTimespec()/TimeFromTimespec() |
| 283 | const struct { |
| 284 | absl::Time t; |
| 285 | timespec ts; |
| 286 | } to_ts[] = { |
| 287 | {absl::FromUnixSeconds(1) + absl::Nanoseconds(1), {1, 1}}, |
| 288 | {absl::FromUnixSeconds(1) + absl::Nanoseconds(1) / 2, {1, 0}}, |
| 289 | {absl::FromUnixSeconds(1) + absl::Nanoseconds(0), {1, 0}}, |
| 290 | {absl::FromUnixSeconds(0) + absl::Nanoseconds(0), {0, 0}}, |
| 291 | {absl::FromUnixSeconds(0) - absl::Nanoseconds(1) / 2, {-1, 999999999}}, |
| 292 | {absl::FromUnixSeconds(0) - absl::Nanoseconds(1), {-1, 999999999}}, |
| 293 | {absl::FromUnixSeconds(-1) + absl::Nanoseconds(1), {-1, 1}}, |
| 294 | {absl::FromUnixSeconds(-1) + absl::Nanoseconds(1) / 2, {-1, 0}}, |
| 295 | {absl::FromUnixSeconds(-1) + absl::Nanoseconds(0), {-1, 0}}, |
| 296 | {absl::FromUnixSeconds(-1) - absl::Nanoseconds(1) / 2, {-2, 999999999}}, |
| 297 | }; |
| 298 | for (const auto& test : to_ts) { |
| 299 | EXPECT_THAT(absl::ToTimespec(test.t), TimespecMatcher(test.ts)); |
| 300 | } |
| 301 | const struct { |
| 302 | timespec ts; |
| 303 | absl::Time t; |
| 304 | } from_ts[] = { |
| 305 | {{1, 1}, absl::FromUnixSeconds(1) + absl::Nanoseconds(1)}, |
| 306 | {{1, 0}, absl::FromUnixSeconds(1) + absl::Nanoseconds(0)}, |
| 307 | {{0, 0}, absl::FromUnixSeconds(0) + absl::Nanoseconds(0)}, |
| 308 | {{0, -1}, absl::FromUnixSeconds(0) - absl::Nanoseconds(1)}, |
| 309 | {{-1, 999999999}, absl::FromUnixSeconds(0) - absl::Nanoseconds(1)}, |
| 310 | {{-1, 1}, absl::FromUnixSeconds(-1) + absl::Nanoseconds(1)}, |
| 311 | {{-1, 0}, absl::FromUnixSeconds(-1) + absl::Nanoseconds(0)}, |
| 312 | {{-1, -1}, absl::FromUnixSeconds(-1) - absl::Nanoseconds(1)}, |
| 313 | {{-2, 999999999}, absl::FromUnixSeconds(-1) - absl::Nanoseconds(1)}, |
| 314 | }; |
| 315 | for (const auto& test : from_ts) { |
| 316 | EXPECT_EQ(test.t, absl::TimeFromTimespec(test.ts)); |
| 317 | } |
| 318 | |
| 319 | // Tests ToTimeval()/TimeFromTimeval() (same as timespec above) |
| 320 | const struct { |
| 321 | absl::Time t; |
| 322 | timeval tv; |
| 323 | } to_tv[] = { |
| 324 | {absl::FromUnixSeconds(1) + absl::Microseconds(1), {1, 1}}, |
| 325 | {absl::FromUnixSeconds(1) + absl::Microseconds(1) / 2, {1, 0}}, |
| 326 | {absl::FromUnixSeconds(1) + absl::Microseconds(0), {1, 0}}, |
| 327 | {absl::FromUnixSeconds(0) + absl::Microseconds(0), {0, 0}}, |
| 328 | {absl::FromUnixSeconds(0) - absl::Microseconds(1) / 2, {-1, 999999}}, |
| 329 | {absl::FromUnixSeconds(0) - absl::Microseconds(1), {-1, 999999}}, |
| 330 | {absl::FromUnixSeconds(-1) + absl::Microseconds(1), {-1, 1}}, |
| 331 | {absl::FromUnixSeconds(-1) + absl::Microseconds(1) / 2, {-1, 0}}, |
| 332 | {absl::FromUnixSeconds(-1) + absl::Microseconds(0), {-1, 0}}, |
| 333 | {absl::FromUnixSeconds(-1) - absl::Microseconds(1) / 2, {-2, 999999}}, |
| 334 | }; |
| 335 | for (const auto& test : to_tv) { |
| 336 | EXPECT_THAT(ToTimeval(test.t), TimevalMatcher(test.tv)); |
| 337 | } |
| 338 | const struct { |
| 339 | timeval tv; |
| 340 | absl::Time t; |
| 341 | } from_tv[] = { |
| 342 | {{1, 1}, absl::FromUnixSeconds(1) + absl::Microseconds(1)}, |
| 343 | {{1, 0}, absl::FromUnixSeconds(1) + absl::Microseconds(0)}, |
| 344 | {{0, 0}, absl::FromUnixSeconds(0) + absl::Microseconds(0)}, |
| 345 | {{0, -1}, absl::FromUnixSeconds(0) - absl::Microseconds(1)}, |
| 346 | {{-1, 999999}, absl::FromUnixSeconds(0) - absl::Microseconds(1)}, |
| 347 | {{-1, 1}, absl::FromUnixSeconds(-1) + absl::Microseconds(1)}, |
| 348 | {{-1, 0}, absl::FromUnixSeconds(-1) + absl::Microseconds(0)}, |
| 349 | {{-1, -1}, absl::FromUnixSeconds(-1) - absl::Microseconds(1)}, |
| 350 | {{-2, 999999}, absl::FromUnixSeconds(-1) - absl::Microseconds(1)}, |
| 351 | }; |
| 352 | for (const auto& test : from_tv) { |
| 353 | EXPECT_EQ(test.t, absl::TimeFromTimeval(test.tv)); |
| 354 | } |
| 355 | |
| 356 | // Tests flooring near negative infinity. |
| 357 | const int64_t min_plus_1 = std::numeric_limits<int64_t>::min() + 1; |
| 358 | EXPECT_EQ(min_plus_1, absl::ToUnixSeconds(absl::FromUnixSeconds(min_plus_1))); |
| 359 | EXPECT_EQ(std::numeric_limits<int64_t>::min(), |
| 360 | absl::ToUnixSeconds( |
| 361 | absl::FromUnixSeconds(min_plus_1) - absl::Nanoseconds(1) / 2)); |
| 362 | |
| 363 | // Tests flooring near positive infinity. |
| 364 | EXPECT_EQ(std::numeric_limits<int64_t>::max(), |
| 365 | absl::ToUnixSeconds(absl::FromUnixSeconds( |
| 366 | std::numeric_limits<int64_t>::max()) + absl::Nanoseconds(1) / 2)); |
| 367 | EXPECT_EQ(std::numeric_limits<int64_t>::max(), |
| 368 | absl::ToUnixSeconds( |
| 369 | absl::FromUnixSeconds(std::numeric_limits<int64_t>::max()))); |
| 370 | EXPECT_EQ(std::numeric_limits<int64_t>::max() - 1, |
| 371 | absl::ToUnixSeconds(absl::FromUnixSeconds( |
| 372 | std::numeric_limits<int64_t>::max()) - absl::Nanoseconds(1) / 2)); |
| 373 | } |
| 374 | |
| 375 | TEST(Time, RoundtripConversion) { |
| 376 | #define TEST_CONVERSION_ROUND_TRIP(SOURCE, FROM, TO, MATCHER) \ |
| 377 | EXPECT_THAT(TO(FROM(SOURCE)), MATCHER(SOURCE)) |
| 378 | |
| 379 | // FromUnixNanos() and ToUnixNanos() |
| 380 | int64_t now_ns = absl::GetCurrentTimeNanos(); |
| 381 | TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixNanos, absl::ToUnixNanos, |
| 382 | testing::Eq); |
| 383 | TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixNanos, absl::ToUnixNanos, |
| 384 | testing::Eq); |
| 385 | TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixNanos, absl::ToUnixNanos, |
| 386 | testing::Eq); |
| 387 | TEST_CONVERSION_ROUND_TRIP(now_ns, absl::FromUnixNanos, absl::ToUnixNanos, |
| 388 | testing::Eq) |
| 389 | << now_ns; |
| 390 | |
| 391 | // FromUnixMicros() and ToUnixMicros() |
| 392 | int64_t now_us = absl::GetCurrentTimeNanos() / 1000; |
| 393 | TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixMicros, absl::ToUnixMicros, |
| 394 | testing::Eq); |
| 395 | TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixMicros, absl::ToUnixMicros, |
| 396 | testing::Eq); |
| 397 | TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixMicros, absl::ToUnixMicros, |
| 398 | testing::Eq); |
| 399 | TEST_CONVERSION_ROUND_TRIP(now_us, absl::FromUnixMicros, absl::ToUnixMicros, |
| 400 | testing::Eq) |
| 401 | << now_us; |
| 402 | |
| 403 | // FromUnixMillis() and ToUnixMillis() |
| 404 | int64_t now_ms = absl::GetCurrentTimeNanos() / 1000000; |
| 405 | TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixMillis, absl::ToUnixMillis, |
| 406 | testing::Eq); |
| 407 | TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixMillis, absl::ToUnixMillis, |
| 408 | testing::Eq); |
| 409 | TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixMillis, absl::ToUnixMillis, |
| 410 | testing::Eq); |
| 411 | TEST_CONVERSION_ROUND_TRIP(now_ms, absl::FromUnixMillis, absl::ToUnixMillis, |
| 412 | testing::Eq) |
| 413 | << now_ms; |
| 414 | |
| 415 | // FromUnixSeconds() and ToUnixSeconds() |
| 416 | int64_t now_s = std::time(nullptr); |
| 417 | TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixSeconds, absl::ToUnixSeconds, |
| 418 | testing::Eq); |
| 419 | TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixSeconds, absl::ToUnixSeconds, |
| 420 | testing::Eq); |
| 421 | TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixSeconds, absl::ToUnixSeconds, |
| 422 | testing::Eq); |
| 423 | TEST_CONVERSION_ROUND_TRIP(now_s, absl::FromUnixSeconds, absl::ToUnixSeconds, |
| 424 | testing::Eq) |
| 425 | << now_s; |
| 426 | |
| 427 | // FromTimeT() and ToTimeT() |
| 428 | time_t now_time_t = std::time(nullptr); |
| 429 | TEST_CONVERSION_ROUND_TRIP(-1, absl::FromTimeT, absl::ToTimeT, testing::Eq); |
| 430 | TEST_CONVERSION_ROUND_TRIP(0, absl::FromTimeT, absl::ToTimeT, testing::Eq); |
| 431 | TEST_CONVERSION_ROUND_TRIP(1, absl::FromTimeT, absl::ToTimeT, testing::Eq); |
| 432 | TEST_CONVERSION_ROUND_TRIP(now_time_t, absl::FromTimeT, absl::ToTimeT, |
| 433 | testing::Eq) |
| 434 | << now_time_t; |
| 435 | |
| 436 | // TimeFromTimeval() and ToTimeval() |
| 437 | timeval tv; |
| 438 | tv.tv_sec = -1; |
| 439 | tv.tv_usec = 0; |
| 440 | TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval, |
| 441 | TimevalMatcher); |
| 442 | tv.tv_sec = -1; |
| 443 | tv.tv_usec = 999999; |
| 444 | TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval, |
| 445 | TimevalMatcher); |
| 446 | tv.tv_sec = 0; |
| 447 | tv.tv_usec = 0; |
| 448 | TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval, |
| 449 | TimevalMatcher); |
| 450 | tv.tv_sec = 0; |
| 451 | tv.tv_usec = 1; |
| 452 | TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval, |
| 453 | TimevalMatcher); |
| 454 | tv.tv_sec = 1; |
| 455 | tv.tv_usec = 0; |
| 456 | TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval, |
| 457 | TimevalMatcher); |
| 458 | |
| 459 | // TimeFromTimespec() and ToTimespec() |
| 460 | timespec ts; |
| 461 | ts.tv_sec = -1; |
| 462 | ts.tv_nsec = 0; |
| 463 | TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec, |
| 464 | TimespecMatcher); |
| 465 | ts.tv_sec = -1; |
| 466 | ts.tv_nsec = 999999999; |
| 467 | TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec, |
| 468 | TimespecMatcher); |
| 469 | ts.tv_sec = 0; |
| 470 | ts.tv_nsec = 0; |
| 471 | TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec, |
| 472 | TimespecMatcher); |
| 473 | ts.tv_sec = 0; |
| 474 | ts.tv_nsec = 1; |
| 475 | TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec, |
| 476 | TimespecMatcher); |
| 477 | ts.tv_sec = 1; |
| 478 | ts.tv_nsec = 0; |
| 479 | TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec, |
| 480 | TimespecMatcher); |
| 481 | |
| 482 | // FromUDate() and ToUDate() |
| 483 | double now_ud = absl::GetCurrentTimeNanos() / 1000000; |
| 484 | TEST_CONVERSION_ROUND_TRIP(-1.5, absl::FromUDate, absl::ToUDate, |
| 485 | testing::DoubleEq); |
| 486 | TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUDate, absl::ToUDate, |
| 487 | testing::DoubleEq); |
| 488 | TEST_CONVERSION_ROUND_TRIP(-0.5, absl::FromUDate, absl::ToUDate, |
| 489 | testing::DoubleEq); |
| 490 | TEST_CONVERSION_ROUND_TRIP(0, absl::FromUDate, absl::ToUDate, |
| 491 | testing::DoubleEq); |
| 492 | TEST_CONVERSION_ROUND_TRIP(0.5, absl::FromUDate, absl::ToUDate, |
| 493 | testing::DoubleEq); |
| 494 | TEST_CONVERSION_ROUND_TRIP(1, absl::FromUDate, absl::ToUDate, |
| 495 | testing::DoubleEq); |
| 496 | TEST_CONVERSION_ROUND_TRIP(1.5, absl::FromUDate, absl::ToUDate, |
| 497 | testing::DoubleEq); |
| 498 | TEST_CONVERSION_ROUND_TRIP(now_ud, absl::FromUDate, absl::ToUDate, |
| 499 | testing::DoubleEq) |
| 500 | << std::fixed << std::setprecision(17) << now_ud; |
| 501 | |
| 502 | // FromUniversal() and ToUniversal() |
| 503 | int64_t now_uni = ((719162LL * (24 * 60 * 60)) * (1000 * 1000 * 10)) + |
| 504 | (absl::GetCurrentTimeNanos() / 100); |
| 505 | TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUniversal, absl::ToUniversal, |
| 506 | testing::Eq); |
| 507 | TEST_CONVERSION_ROUND_TRIP(0, absl::FromUniversal, absl::ToUniversal, |
| 508 | testing::Eq); |
| 509 | TEST_CONVERSION_ROUND_TRIP(1, absl::FromUniversal, absl::ToUniversal, |
| 510 | testing::Eq); |
| 511 | TEST_CONVERSION_ROUND_TRIP(now_uni, absl::FromUniversal, absl::ToUniversal, |
| 512 | testing::Eq) |
| 513 | << now_uni; |
| 514 | |
| 515 | #undef TEST_CONVERSION_ROUND_TRIP |
| 516 | } |
| 517 | |
| 518 | template <typename Duration> |
| 519 | std::chrono::system_clock::time_point MakeChronoUnixTime(const Duration& d) { |
| 520 | return std::chrono::system_clock::from_time_t(0) + d; |
| 521 | } |
| 522 | |
| 523 | TEST(Time, FromChrono) { |
| 524 | EXPECT_EQ(absl::FromTimeT(-1), |
| 525 | absl::FromChrono(std::chrono::system_clock::from_time_t(-1))); |
| 526 | EXPECT_EQ(absl::FromTimeT(0), |
| 527 | absl::FromChrono(std::chrono::system_clock::from_time_t(0))); |
| 528 | EXPECT_EQ(absl::FromTimeT(1), |
| 529 | absl::FromChrono(std::chrono::system_clock::from_time_t(1))); |
| 530 | |
| 531 | EXPECT_EQ( |
| 532 | absl::FromUnixMillis(-1), |
| 533 | absl::FromChrono(MakeChronoUnixTime(std::chrono::milliseconds(-1)))); |
| 534 | EXPECT_EQ(absl::FromUnixMillis(0), |
| 535 | absl::FromChrono(MakeChronoUnixTime(std::chrono::milliseconds(0)))); |
| 536 | EXPECT_EQ(absl::FromUnixMillis(1), |
| 537 | absl::FromChrono(MakeChronoUnixTime(std::chrono::milliseconds(1)))); |
| 538 | |
| 539 | // Chrono doesn't define exactly its range and precision (neither does |
| 540 | // absl::Time), so let's simply test +/- ~100 years to make sure things work. |
| 541 | const auto century_sec = 60 * 60 * 24 * 365 * int64_t{100}; |
| 542 | const auto century = std::chrono::seconds(century_sec); |
| 543 | const auto chrono_future = MakeChronoUnixTime(century); |
| 544 | const auto chrono_past = MakeChronoUnixTime(-century); |
| 545 | EXPECT_EQ(absl::FromUnixSeconds(century_sec), |
| 546 | absl::FromChrono(chrono_future)); |
| 547 | EXPECT_EQ(absl::FromUnixSeconds(-century_sec), absl::FromChrono(chrono_past)); |
| 548 | |
| 549 | // Roundtrip them both back to chrono. |
| 550 | EXPECT_EQ(chrono_future, |
| 551 | absl::ToChronoTime(absl::FromUnixSeconds(century_sec))); |
| 552 | EXPECT_EQ(chrono_past, |
| 553 | absl::ToChronoTime(absl::FromUnixSeconds(-century_sec))); |
| 554 | } |
| 555 | |
| 556 | TEST(Time, ToChronoTime) { |
| 557 | EXPECT_EQ(std::chrono::system_clock::from_time_t(-1), |
| 558 | absl::ToChronoTime(absl::FromTimeT(-1))); |
| 559 | EXPECT_EQ(std::chrono::system_clock::from_time_t(0), |
| 560 | absl::ToChronoTime(absl::FromTimeT(0))); |
| 561 | EXPECT_EQ(std::chrono::system_clock::from_time_t(1), |
| 562 | absl::ToChronoTime(absl::FromTimeT(1))); |
| 563 | |
| 564 | EXPECT_EQ(MakeChronoUnixTime(std::chrono::milliseconds(-1)), |
| 565 | absl::ToChronoTime(absl::FromUnixMillis(-1))); |
| 566 | EXPECT_EQ(MakeChronoUnixTime(std::chrono::milliseconds(0)), |
| 567 | absl::ToChronoTime(absl::FromUnixMillis(0))); |
| 568 | EXPECT_EQ(MakeChronoUnixTime(std::chrono::milliseconds(1)), |
| 569 | absl::ToChronoTime(absl::FromUnixMillis(1))); |
| 570 | |
| 571 | // Time before the Unix epoch should floor, not trunc. |
| 572 | const auto tick = absl::Nanoseconds(1) / 4; |
| 573 | EXPECT_EQ(std::chrono::system_clock::from_time_t(0) - |
| 574 | std::chrono::system_clock::duration(1), |
| 575 | absl::ToChronoTime(absl::UnixEpoch() - tick)); |
| 576 | } |
| 577 | |
| 578 | TEST(Time, TimeZoneAt) { |
| 579 | const absl::TimeZone nyc = |
| 580 | absl::time_internal::LoadTimeZone("America/New_York"); |
| 581 | const std::string fmt = "%a, %e %b %Y %H:%M:%S %z (%Z)"; |
| 582 | |
| 583 | // A non-transition where the civil time is unique. |
| 584 | absl::CivilSecond nov01(2013, 11, 1, 8, 30, 0); |
| 585 | const auto nov01_ci = nyc.At(nov01); |
| 586 | EXPECT_EQ(absl::TimeZone::TimeInfo::UNIQUE, nov01_ci.kind); |
| 587 | EXPECT_EQ("Fri, 1 Nov 2013 08:30:00 -0400 (EDT)", |
| 588 | absl::FormatTime(fmt, nov01_ci.pre, nyc)); |
| 589 | EXPECT_EQ(nov01_ci.pre, nov01_ci.trans); |
| 590 | EXPECT_EQ(nov01_ci.pre, nov01_ci.post); |
| 591 | EXPECT_EQ(nov01_ci.pre, absl::FromCivil(nov01, nyc)); |
| 592 | |
| 593 | // A Spring DST transition, when there is a gap in civil time |
| 594 | // and we prefer the later of the possible interpretations of a |
| 595 | // non-existent time. |
| 596 | absl::CivilSecond mar13(2011, 3, 13, 2, 15, 0); |
| 597 | const auto mar_ci = nyc.At(mar13); |
| 598 | EXPECT_EQ(absl::TimeZone::TimeInfo::SKIPPED, mar_ci.kind); |
| 599 | EXPECT_EQ("Sun, 13 Mar 2011 03:15:00 -0400 (EDT)", |
| 600 | absl::FormatTime(fmt, mar_ci.pre, nyc)); |
| 601 | EXPECT_EQ("Sun, 13 Mar 2011 03:00:00 -0400 (EDT)", |
| 602 | absl::FormatTime(fmt, mar_ci.trans, nyc)); |
| 603 | EXPECT_EQ("Sun, 13 Mar 2011 01:15:00 -0500 (EST)", |
| 604 | absl::FormatTime(fmt, mar_ci.post, nyc)); |
| 605 | EXPECT_EQ(mar_ci.trans, absl::FromCivil(mar13, nyc)); |
| 606 | |
| 607 | // A Fall DST transition, when civil times are repeated and |
| 608 | // we prefer the earlier of the possible interpretations of an |
| 609 | // ambiguous time. |
| 610 | absl::CivilSecond nov06(2011, 11, 6, 1, 15, 0); |
| 611 | const auto nov06_ci = nyc.At(nov06); |
| 612 | EXPECT_EQ(absl::TimeZone::TimeInfo::REPEATED, nov06_ci.kind); |
| 613 | EXPECT_EQ("Sun, 6 Nov 2011 01:15:00 -0400 (EDT)", |
| 614 | absl::FormatTime(fmt, nov06_ci.pre, nyc)); |
| 615 | EXPECT_EQ("Sun, 6 Nov 2011 01:00:00 -0500 (EST)", |
| 616 | absl::FormatTime(fmt, nov06_ci.trans, nyc)); |
| 617 | EXPECT_EQ("Sun, 6 Nov 2011 01:15:00 -0500 (EST)", |
| 618 | absl::FormatTime(fmt, nov06_ci.post, nyc)); |
| 619 | EXPECT_EQ(nov06_ci.pre, absl::FromCivil(nov06, nyc)); |
| 620 | |
| 621 | // Check that (time_t) -1 is handled correctly. |
| 622 | absl::CivilSecond minus1(1969, 12, 31, 18, 59, 59); |
| 623 | const auto minus1_cl = nyc.At(minus1); |
| 624 | EXPECT_EQ(absl::TimeZone::TimeInfo::UNIQUE, minus1_cl.kind); |
| 625 | EXPECT_EQ(-1, absl::ToTimeT(minus1_cl.pre)); |
| 626 | EXPECT_EQ("Wed, 31 Dec 1969 18:59:59 -0500 (EST)", |
| 627 | absl::FormatTime(fmt, minus1_cl.pre, nyc)); |
| 628 | EXPECT_EQ("Wed, 31 Dec 1969 23:59:59 +0000 (UTC)", |
| 629 | absl::FormatTime(fmt, minus1_cl.pre, absl::UTCTimeZone())); |
| 630 | } |
| 631 | |
| 632 | // FromCivil(CivilSecond(year, mon, day, hour, min, sec), UTCTimeZone()) |
| 633 | // has a specialized fastpath implementation, which we exercise here. |
| 634 | TEST(Time, FromCivilUTC) { |
| 635 | const absl::TimeZone utc = absl::UTCTimeZone(); |
| 636 | const std::string fmt = "%a, %e %b %Y %H:%M:%S %z (%Z)"; |
| 637 | const int kMax = std::numeric_limits<int>::max(); |
| 638 | const int kMin = std::numeric_limits<int>::min(); |
| 639 | absl::Time t; |
| 640 | |
| 641 | // 292091940881 is the last positive year to use the fastpath. |
| 642 | t = absl::FromCivil( |
| 643 | absl::CivilSecond(292091940881, kMax, kMax, kMax, kMax, kMax), utc); |
| 644 | EXPECT_EQ("Fri, 25 Nov 292277026596 12:21:07 +0000 (UTC)", |
| 645 | absl::FormatTime(fmt, t, utc)); |
| 646 | t = absl::FromCivil( |
| 647 | absl::CivilSecond(292091940882, kMax, kMax, kMax, kMax, kMax), utc); |
| 648 | EXPECT_EQ("infinite-future", absl::FormatTime(fmt, t, utc)); // no overflow |
| 649 | |
| 650 | // -292091936940 is the last negative year to use the fastpath. |
| 651 | t = absl::FromCivil( |
| 652 | absl::CivilSecond(-292091936940, kMin, kMin, kMin, kMin, kMin), utc); |
| 653 | EXPECT_EQ("Fri, 1 Nov -292277022657 10:37:52 +0000 (UTC)", |
| 654 | absl::FormatTime(fmt, t, utc)); |
| 655 | t = absl::FromCivil( |
| 656 | absl::CivilSecond(-292091936941, kMin, kMin, kMin, kMin, kMin), utc); |
| 657 | EXPECT_EQ("infinite-past", absl::FormatTime(fmt, t, utc)); // no underflow |
| 658 | |
| 659 | // Check that we're counting leap years correctly. |
| 660 | t = absl::FromCivil(absl::CivilSecond(1900, 2, 28, 23, 59, 59), utc); |
| 661 | EXPECT_EQ("Wed, 28 Feb 1900 23:59:59 +0000 (UTC)", |
| 662 | absl::FormatTime(fmt, t, utc)); |
| 663 | t = absl::FromCivil(absl::CivilSecond(1900, 3, 1, 0, 0, 0), utc); |
| 664 | EXPECT_EQ("Thu, 1 Mar 1900 00:00:00 +0000 (UTC)", |
| 665 | absl::FormatTime(fmt, t, utc)); |
| 666 | t = absl::FromCivil(absl::CivilSecond(2000, 2, 29, 23, 59, 59), utc); |
| 667 | EXPECT_EQ("Tue, 29 Feb 2000 23:59:59 +0000 (UTC)", |
| 668 | absl::FormatTime(fmt, t, utc)); |
| 669 | t = absl::FromCivil(absl::CivilSecond(2000, 3, 1, 0, 0, 0), utc); |
| 670 | EXPECT_EQ("Wed, 1 Mar 2000 00:00:00 +0000 (UTC)", |
| 671 | absl::FormatTime(fmt, t, utc)); |
| 672 | } |
| 673 | |
| 674 | TEST(Time, ToTM) { |
| 675 | const absl::TimeZone utc = absl::UTCTimeZone(); |
| 676 | |
| 677 | // Compares the results of ToTM() to gmtime_r() for lots of times over the |
| 678 | // course of a few days. |
| 679 | const absl::Time start = |
| 680 | absl::FromCivil(absl::CivilSecond(2014, 1, 2, 3, 4, 5), utc); |
| 681 | const absl::Time end = |
| 682 | absl::FromCivil(absl::CivilSecond(2014, 1, 5, 3, 4, 5), utc); |
| 683 | for (absl::Time t = start; t < end; t += absl::Seconds(30)) { |
| 684 | const struct tm tm_bt = ToTM(t, utc); |
| 685 | const time_t tt = absl::ToTimeT(t); |
| 686 | struct tm tm_lc; |
| 687 | #ifdef _WIN32 |
| 688 | gmtime_s(&tm_lc, &tt); |
| 689 | #else |
| 690 | gmtime_r(&tt, &tm_lc); |
| 691 | #endif |
| 692 | EXPECT_EQ(tm_lc.tm_year, tm_bt.tm_year); |
| 693 | EXPECT_EQ(tm_lc.tm_mon, tm_bt.tm_mon); |
| 694 | EXPECT_EQ(tm_lc.tm_mday, tm_bt.tm_mday); |
| 695 | EXPECT_EQ(tm_lc.tm_hour, tm_bt.tm_hour); |
| 696 | EXPECT_EQ(tm_lc.tm_min, tm_bt.tm_min); |
| 697 | EXPECT_EQ(tm_lc.tm_sec, tm_bt.tm_sec); |
| 698 | EXPECT_EQ(tm_lc.tm_wday, tm_bt.tm_wday); |
| 699 | EXPECT_EQ(tm_lc.tm_yday, tm_bt.tm_yday); |
| 700 | EXPECT_EQ(tm_lc.tm_isdst, tm_bt.tm_isdst); |
| 701 | |
| 702 | ASSERT_FALSE(HasFailure()); |
| 703 | } |
| 704 | |
| 705 | // Checks that the tm_isdst field is correct when in standard time. |
| 706 | const absl::TimeZone nyc = |
| 707 | absl::time_internal::LoadTimeZone("America/New_York"); |
| 708 | absl::Time t = absl::FromCivil(absl::CivilSecond(2014, 3, 1, 0, 0, 0), nyc); |
| 709 | struct tm tm = ToTM(t, nyc); |
| 710 | EXPECT_FALSE(tm.tm_isdst); |
| 711 | |
| 712 | // Checks that the tm_isdst field is correct when in daylight time. |
| 713 | t = absl::FromCivil(absl::CivilSecond(2014, 4, 1, 0, 0, 0), nyc); |
| 714 | tm = ToTM(t, nyc); |
| 715 | EXPECT_TRUE(tm.tm_isdst); |
| 716 | |
| 717 | // Checks overflow. |
| 718 | tm = ToTM(absl::InfiniteFuture(), nyc); |
| 719 | EXPECT_EQ(std::numeric_limits<int>::max() - 1900, tm.tm_year); |
| 720 | EXPECT_EQ(11, tm.tm_mon); |
| 721 | EXPECT_EQ(31, tm.tm_mday); |
| 722 | EXPECT_EQ(23, tm.tm_hour); |
| 723 | EXPECT_EQ(59, tm.tm_min); |
| 724 | EXPECT_EQ(59, tm.tm_sec); |
| 725 | EXPECT_EQ(4, tm.tm_wday); |
| 726 | EXPECT_EQ(364, tm.tm_yday); |
| 727 | EXPECT_FALSE(tm.tm_isdst); |
| 728 | |
| 729 | // Checks underflow. |
| 730 | tm = ToTM(absl::InfinitePast(), nyc); |
| 731 | EXPECT_EQ(std::numeric_limits<int>::min(), tm.tm_year); |
| 732 | EXPECT_EQ(0, tm.tm_mon); |
| 733 | EXPECT_EQ(1, tm.tm_mday); |
| 734 | EXPECT_EQ(0, tm.tm_hour); |
| 735 | EXPECT_EQ(0, tm.tm_min); |
| 736 | EXPECT_EQ(0, tm.tm_sec); |
| 737 | EXPECT_EQ(0, tm.tm_wday); |
| 738 | EXPECT_EQ(0, tm.tm_yday); |
| 739 | EXPECT_FALSE(tm.tm_isdst); |
| 740 | } |
| 741 | |
| 742 | TEST(Time, FromTM) { |
| 743 | const absl::TimeZone nyc = |
| 744 | absl::time_internal::LoadTimeZone("America/New_York"); |
| 745 | |
| 746 | // Verifies that tm_isdst doesn't affect anything when the time is unique. |
| 747 | struct tm tm; |
| 748 | std::memset(&tm, 0, sizeof(tm)); |
| 749 | tm.tm_year = 2014 - 1900; |
| 750 | tm.tm_mon = 6 - 1; |
| 751 | tm.tm_mday = 28; |
| 752 | tm.tm_hour = 1; |
| 753 | tm.tm_min = 2; |
| 754 | tm.tm_sec = 3; |
| 755 | tm.tm_isdst = -1; |
| 756 | absl::Time t = FromTM(tm, nyc); |
| 757 | EXPECT_EQ("2014-06-28T01:02:03-04:00", absl::FormatTime(t, nyc)); // DST |
| 758 | tm.tm_isdst = 0; |
| 759 | t = FromTM(tm, nyc); |
| 760 | EXPECT_EQ("2014-06-28T01:02:03-04:00", absl::FormatTime(t, nyc)); // DST |
| 761 | tm.tm_isdst = 1; |
| 762 | t = FromTM(tm, nyc); |
| 763 | EXPECT_EQ("2014-06-28T01:02:03-04:00", absl::FormatTime(t, nyc)); // DST |
| 764 | |
| 765 | // Adjusts tm to refer to an ambiguous time. |
| 766 | tm.tm_year = 2014 - 1900; |
| 767 | tm.tm_mon = 11 - 1; |
| 768 | tm.tm_mday = 2; |
| 769 | tm.tm_hour = 1; |
| 770 | tm.tm_min = 30; |
| 771 | tm.tm_sec = 42; |
| 772 | tm.tm_isdst = -1; |
| 773 | t = FromTM(tm, nyc); |
| 774 | EXPECT_EQ("2014-11-02T01:30:42-04:00", absl::FormatTime(t, nyc)); // DST |
| 775 | tm.tm_isdst = 0; |
| 776 | t = FromTM(tm, nyc); |
| 777 | EXPECT_EQ("2014-11-02T01:30:42-05:00", absl::FormatTime(t, nyc)); // STD |
| 778 | tm.tm_isdst = 1; |
| 779 | t = FromTM(tm, nyc); |
| 780 | EXPECT_EQ("2014-11-02T01:30:42-04:00", absl::FormatTime(t, nyc)); // DST |
| 781 | |
| 782 | // Adjusts tm to refer to a skipped time. |
| 783 | tm.tm_year = 2014 - 1900; |
| 784 | tm.tm_mon = 3 - 1; |
| 785 | tm.tm_mday = 9; |
| 786 | tm.tm_hour = 2; |
| 787 | tm.tm_min = 30; |
| 788 | tm.tm_sec = 42; |
| 789 | tm.tm_isdst = -1; |
| 790 | t = FromTM(tm, nyc); |
| 791 | EXPECT_EQ("2014-03-09T03:30:42-04:00", absl::FormatTime(t, nyc)); // DST |
| 792 | tm.tm_isdst = 0; |
| 793 | t = FromTM(tm, nyc); |
| 794 | EXPECT_EQ("2014-03-09T01:30:42-05:00", absl::FormatTime(t, nyc)); // STD |
| 795 | tm.tm_isdst = 1; |
| 796 | t = FromTM(tm, nyc); |
| 797 | EXPECT_EQ("2014-03-09T03:30:42-04:00", absl::FormatTime(t, nyc)); // DST |
| 798 | } |
| 799 | |
| 800 | TEST(Time, TMRoundTrip) { |
| 801 | const absl::TimeZone nyc = |
| 802 | absl::time_internal::LoadTimeZone("America/New_York"); |
| 803 | |
| 804 | // Test round-tripping across a skipped transition |
| 805 | absl::Time start = absl::FromCivil(absl::CivilHour(2014, 3, 9, 0), nyc); |
| 806 | absl::Time end = absl::FromCivil(absl::CivilHour(2014, 3, 9, 4), nyc); |
| 807 | for (absl::Time t = start; t < end; t += absl::Minutes(1)) { |
| 808 | struct tm tm = ToTM(t, nyc); |
| 809 | absl::Time rt = FromTM(tm, nyc); |
| 810 | EXPECT_EQ(rt, t); |
| 811 | } |
| 812 | |
| 813 | // Test round-tripping across an ambiguous transition |
| 814 | start = absl::FromCivil(absl::CivilHour(2014, 11, 2, 0), nyc); |
| 815 | end = absl::FromCivil(absl::CivilHour(2014, 11, 2, 4), nyc); |
| 816 | for (absl::Time t = start; t < end; t += absl::Minutes(1)) { |
| 817 | struct tm tm = ToTM(t, nyc); |
| 818 | absl::Time rt = FromTM(tm, nyc); |
| 819 | EXPECT_EQ(rt, t); |
| 820 | } |
| 821 | |
| 822 | // Test round-tripping of unique instants crossing a day boundary |
| 823 | start = absl::FromCivil(absl::CivilHour(2014, 6, 27, 22), nyc); |
| 824 | end = absl::FromCivil(absl::CivilHour(2014, 6, 28, 4), nyc); |
| 825 | for (absl::Time t = start; t < end; t += absl::Minutes(1)) { |
| 826 | struct tm tm = ToTM(t, nyc); |
| 827 | absl::Time rt = FromTM(tm, nyc); |
| 828 | EXPECT_EQ(rt, t); |
| 829 | } |
| 830 | } |
| 831 | |
| 832 | TEST(Time, Range) { |
| 833 | // The API's documented range is +/- 100 billion years. |
| 834 | const absl::Duration range = absl::Hours(24) * 365.2425 * 100000000000; |
| 835 | |
| 836 | // Arithmetic and comparison still works at +/-range around base values. |
| 837 | absl::Time bases[2] = {absl::UnixEpoch(), absl::Now()}; |
| 838 | for (const auto base : bases) { |
| 839 | absl::Time bottom = base - range; |
| 840 | EXPECT_GT(bottom, bottom - absl::Nanoseconds(1)); |
| 841 | EXPECT_LT(bottom, bottom + absl::Nanoseconds(1)); |
| 842 | absl::Time top = base + range; |
| 843 | EXPECT_GT(top, top - absl::Nanoseconds(1)); |
| 844 | EXPECT_LT(top, top + absl::Nanoseconds(1)); |
| 845 | absl::Duration full_range = 2 * range; |
| 846 | EXPECT_EQ(full_range, top - bottom); |
| 847 | EXPECT_EQ(-full_range, bottom - top); |
| 848 | } |
| 849 | } |
| 850 | |
| 851 | TEST(Time, Limits) { |
| 852 | // It is an implementation detail that Time().rep_ == ZeroDuration(), |
| 853 | // and that the resolution of a Duration is 1/4 of a nanosecond. |
| 854 | const absl::Time zero; |
| 855 | const absl::Time max = |
| 856 | zero + absl::Seconds(std::numeric_limits<int64_t>::max()) + |
| 857 | absl::Nanoseconds(999999999) + absl::Nanoseconds(3) / 4; |
| 858 | const absl::Time min = |
| 859 | zero + absl::Seconds(std::numeric_limits<int64_t>::min()); |
| 860 | |
| 861 | // Some simple max/min bounds checks. |
| 862 | EXPECT_LT(max, absl::InfiniteFuture()); |
| 863 | EXPECT_GT(min, absl::InfinitePast()); |
| 864 | EXPECT_LT(zero, max); |
| 865 | EXPECT_GT(zero, min); |
| 866 | EXPECT_GE(absl::UnixEpoch(), min); |
| 867 | EXPECT_LT(absl::UnixEpoch(), max); |
| 868 | |
| 869 | // Check sign of Time differences. |
| 870 | EXPECT_LT(absl::ZeroDuration(), max - zero); |
| 871 | EXPECT_LT(absl::ZeroDuration(), |
| 872 | zero - absl::Nanoseconds(1) / 4 - min); // avoid zero - min |
| 873 | |
| 874 | // Arithmetic works at max - 0.25ns and min + 0.25ns. |
| 875 | EXPECT_GT(max, max - absl::Nanoseconds(1) / 4); |
| 876 | EXPECT_LT(min, min + absl::Nanoseconds(1) / 4); |
| 877 | } |
| 878 | |
| 879 | TEST(Time, ConversionSaturation) { |
| 880 | const absl::TimeZone utc = absl::UTCTimeZone(); |
| 881 | absl::Time t; |
| 882 | |
| 883 | const auto max_time_t = std::numeric_limits<time_t>::max(); |
| 884 | const auto min_time_t = std::numeric_limits<time_t>::min(); |
| 885 | time_t tt = max_time_t - 1; |
| 886 | t = absl::FromTimeT(tt); |
| 887 | tt = absl::ToTimeT(t); |
| 888 | EXPECT_EQ(max_time_t - 1, tt); |
| 889 | t += absl::Seconds(1); |
| 890 | tt = absl::ToTimeT(t); |
| 891 | EXPECT_EQ(max_time_t, tt); |
| 892 | t += absl::Seconds(1); // no effect |
| 893 | tt = absl::ToTimeT(t); |
| 894 | EXPECT_EQ(max_time_t, tt); |
| 895 | |
| 896 | tt = min_time_t + 1; |
| 897 | t = absl::FromTimeT(tt); |
| 898 | tt = absl::ToTimeT(t); |
| 899 | EXPECT_EQ(min_time_t + 1, tt); |
| 900 | t -= absl::Seconds(1); |
| 901 | tt = absl::ToTimeT(t); |
| 902 | EXPECT_EQ(min_time_t, tt); |
| 903 | t -= absl::Seconds(1); // no effect |
| 904 | tt = absl::ToTimeT(t); |
| 905 | EXPECT_EQ(min_time_t, tt); |
| 906 | |
| 907 | const auto max_timeval_sec = |
| 908 | std::numeric_limits<decltype(timeval::tv_sec)>::max(); |
| 909 | const auto min_timeval_sec = |
| 910 | std::numeric_limits<decltype(timeval::tv_sec)>::min(); |
| 911 | timeval tv; |
| 912 | tv.tv_sec = max_timeval_sec; |
| 913 | tv.tv_usec = 999998; |
| 914 | t = absl::TimeFromTimeval(tv); |
| 915 | tv = ToTimeval(t); |
| 916 | EXPECT_EQ(max_timeval_sec, tv.tv_sec); |
| 917 | EXPECT_EQ(999998, tv.tv_usec); |
| 918 | t += absl::Microseconds(1); |
| 919 | tv = ToTimeval(t); |
| 920 | EXPECT_EQ(max_timeval_sec, tv.tv_sec); |
| 921 | EXPECT_EQ(999999, tv.tv_usec); |
| 922 | t += absl::Microseconds(1); // no effect |
| 923 | tv = ToTimeval(t); |
| 924 | EXPECT_EQ(max_timeval_sec, tv.tv_sec); |
| 925 | EXPECT_EQ(999999, tv.tv_usec); |
| 926 | |
| 927 | tv.tv_sec = min_timeval_sec; |
| 928 | tv.tv_usec = 1; |
| 929 | t = absl::TimeFromTimeval(tv); |
| 930 | tv = ToTimeval(t); |
| 931 | EXPECT_EQ(min_timeval_sec, tv.tv_sec); |
| 932 | EXPECT_EQ(1, tv.tv_usec); |
| 933 | t -= absl::Microseconds(1); |
| 934 | tv = ToTimeval(t); |
| 935 | EXPECT_EQ(min_timeval_sec, tv.tv_sec); |
| 936 | EXPECT_EQ(0, tv.tv_usec); |
| 937 | t -= absl::Microseconds(1); // no effect |
| 938 | tv = ToTimeval(t); |
| 939 | EXPECT_EQ(min_timeval_sec, tv.tv_sec); |
| 940 | EXPECT_EQ(0, tv.tv_usec); |
| 941 | |
| 942 | const auto max_timespec_sec = |
| 943 | std::numeric_limits<decltype(timespec::tv_sec)>::max(); |
| 944 | const auto min_timespec_sec = |
| 945 | std::numeric_limits<decltype(timespec::tv_sec)>::min(); |
| 946 | timespec ts; |
| 947 | ts.tv_sec = max_timespec_sec; |
| 948 | ts.tv_nsec = 999999998; |
| 949 | t = absl::TimeFromTimespec(ts); |
| 950 | ts = absl::ToTimespec(t); |
| 951 | EXPECT_EQ(max_timespec_sec, ts.tv_sec); |
| 952 | EXPECT_EQ(999999998, ts.tv_nsec); |
| 953 | t += absl::Nanoseconds(1); |
| 954 | ts = absl::ToTimespec(t); |
| 955 | EXPECT_EQ(max_timespec_sec, ts.tv_sec); |
| 956 | EXPECT_EQ(999999999, ts.tv_nsec); |
| 957 | t += absl::Nanoseconds(1); // no effect |
| 958 | ts = absl::ToTimespec(t); |
| 959 | EXPECT_EQ(max_timespec_sec, ts.tv_sec); |
| 960 | EXPECT_EQ(999999999, ts.tv_nsec); |
| 961 | |
| 962 | ts.tv_sec = min_timespec_sec; |
| 963 | ts.tv_nsec = 1; |
| 964 | t = absl::TimeFromTimespec(ts); |
| 965 | ts = absl::ToTimespec(t); |
| 966 | EXPECT_EQ(min_timespec_sec, ts.tv_sec); |
| 967 | EXPECT_EQ(1, ts.tv_nsec); |
| 968 | t -= absl::Nanoseconds(1); |
| 969 | ts = absl::ToTimespec(t); |
| 970 | EXPECT_EQ(min_timespec_sec, ts.tv_sec); |
| 971 | EXPECT_EQ(0, ts.tv_nsec); |
| 972 | t -= absl::Nanoseconds(1); // no effect |
| 973 | ts = absl::ToTimespec(t); |
| 974 | EXPECT_EQ(min_timespec_sec, ts.tv_sec); |
| 975 | EXPECT_EQ(0, ts.tv_nsec); |
| 976 | |
| 977 | // Checks how TimeZone::At() saturates on infinities. |
| 978 | auto ci = utc.At(absl::InfiniteFuture()); |
| 979 | EXPECT_CIVIL_INFO(ci, std::numeric_limits<int64_t>::max(), 12, 31, 23, |
| 980 | 59, 59, 0, false); |
| 981 | EXPECT_EQ(absl::InfiniteDuration(), ci.subsecond); |
| 982 | EXPECT_EQ(absl::Weekday::thursday, absl::GetWeekday(ci.cs)); |
| 983 | EXPECT_EQ(365, absl::GetYearDay(ci.cs)); |
| 984 | EXPECT_STREQ("-00", ci.zone_abbr); // artifact of TimeZone::At() |
| 985 | ci = utc.At(absl::InfinitePast()); |
| 986 | EXPECT_CIVIL_INFO(ci, std::numeric_limits<int64_t>::min(), 1, 1, 0, 0, |
| 987 | 0, 0, false); |
| 988 | EXPECT_EQ(-absl::InfiniteDuration(), ci.subsecond); |
| 989 | EXPECT_EQ(absl::Weekday::sunday, absl::GetWeekday(ci.cs)); |
| 990 | EXPECT_EQ(1, absl::GetYearDay(ci.cs)); |
| 991 | EXPECT_STREQ("-00", ci.zone_abbr); // artifact of TimeZone::At() |
| 992 | |
| 993 | // Approach the maximal Time value from below. |
| 994 | t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 15, 30, 6), utc); |
| 995 | EXPECT_EQ("292277026596-12-04T15:30:06+00:00", |
| 996 | absl::FormatTime(absl::RFC3339_full, t, utc)); |
| 997 | t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 15, 30, 7), utc); |
| 998 | EXPECT_EQ("292277026596-12-04T15:30:07+00:00", |
| 999 | absl::FormatTime(absl::RFC3339_full, t, utc)); |
| 1000 | EXPECT_EQ( |
| 1001 | absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::max()), t); |
| 1002 | |
| 1003 | // Checks that we can also get the maximal Time value for a far-east zone. |
| 1004 | const absl::TimeZone plus14 = absl::FixedTimeZone(14 * 60 * 60); |
| 1005 | t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 5, 5, 30, 7), plus14); |
| 1006 | EXPECT_EQ("292277026596-12-05T05:30:07+14:00", |
| 1007 | absl::FormatTime(absl::RFC3339_full, t, plus14)); |
| 1008 | EXPECT_EQ( |
| 1009 | absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::max()), t); |
| 1010 | |
| 1011 | // One second later should push us to infinity. |
| 1012 | t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 15, 30, 8), utc); |
| 1013 | EXPECT_EQ("infinite-future", absl::FormatTime(absl::RFC3339_full, t, utc)); |
| 1014 | |
| 1015 | // Approach the minimal Time value from above. |
| 1016 | t = absl::FromCivil(absl::CivilSecond(-292277022657, 1, 27, 8, 29, 53), utc); |
| 1017 | EXPECT_EQ("-292277022657-01-27T08:29:53+00:00", |
| 1018 | absl::FormatTime(absl::RFC3339_full, t, utc)); |
| 1019 | t = absl::FromCivil(absl::CivilSecond(-292277022657, 1, 27, 8, 29, 52), utc); |
| 1020 | EXPECT_EQ("-292277022657-01-27T08:29:52+00:00", |
| 1021 | absl::FormatTime(absl::RFC3339_full, t, utc)); |
| 1022 | EXPECT_EQ( |
| 1023 | absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::min()), t); |
| 1024 | |
| 1025 | // Checks that we can also get the minimal Time value for a far-west zone. |
| 1026 | const absl::TimeZone minus12 = absl::FixedTimeZone(-12 * 60 * 60); |
| 1027 | t = absl::FromCivil(absl::CivilSecond(-292277022657, 1, 26, 20, 29, 52), |
| 1028 | minus12); |
| 1029 | EXPECT_EQ("-292277022657-01-26T20:29:52-12:00", |
| 1030 | absl::FormatTime(absl::RFC3339_full, t, minus12)); |
| 1031 | EXPECT_EQ( |
| 1032 | absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::min()), t); |
| 1033 | |
| 1034 | // One second before should push us to -infinity. |
| 1035 | t = absl::FromCivil(absl::CivilSecond(-292277022657, 1, 27, 8, 29, 51), utc); |
| 1036 | EXPECT_EQ("infinite-past", absl::FormatTime(absl::RFC3339_full, t, utc)); |
| 1037 | } |
| 1038 | |
| 1039 | // In zones with POSIX-style recurring rules we use special logic to |
| 1040 | // handle conversions in the distant future. Here we check the limits |
| 1041 | // of those conversions, particularly with respect to integer overflow. |
| 1042 | TEST(Time, ExtendedConversionSaturation) { |
| 1043 | const absl::TimeZone syd = |
| 1044 | absl::time_internal::LoadTimeZone("Australia/Sydney"); |
| 1045 | const absl::TimeZone nyc = |
| 1046 | absl::time_internal::LoadTimeZone("America/New_York"); |
| 1047 | const absl::Time max = |
| 1048 | absl::FromUnixSeconds(std::numeric_limits<int64_t>::max()); |
| 1049 | absl::TimeZone::CivilInfo ci; |
| 1050 | absl::Time t; |
| 1051 | |
| 1052 | // The maximal time converted in each zone. |
| 1053 | ci = syd.At(max); |
| 1054 | EXPECT_CIVIL_INFO(ci, 292277026596, 12, 5, 2, 30, 7, 39600, true); |
| 1055 | t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 5, 2, 30, 7), syd); |
| 1056 | EXPECT_EQ(max, t); |
| 1057 | ci = nyc.At(max); |
| 1058 | EXPECT_CIVIL_INFO(ci, 292277026596, 12, 4, 10, 30, 7, -18000, false); |
| 1059 | t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 10, 30, 7), nyc); |
| 1060 | EXPECT_EQ(max, t); |
| 1061 | |
| 1062 | // One second later should push us to infinity. |
| 1063 | t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 5, 2, 30, 8), syd); |
| 1064 | EXPECT_EQ(absl::InfiniteFuture(), t); |
| 1065 | t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 10, 30, 8), nyc); |
| 1066 | EXPECT_EQ(absl::InfiniteFuture(), t); |
| 1067 | |
| 1068 | // And we should stick there. |
| 1069 | t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 5, 2, 30, 9), syd); |
| 1070 | EXPECT_EQ(absl::InfiniteFuture(), t); |
| 1071 | t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 10, 30, 9), nyc); |
| 1072 | EXPECT_EQ(absl::InfiniteFuture(), t); |
| 1073 | |
| 1074 | // All the way up to a saturated date/time, without overflow. |
| 1075 | t = absl::FromCivil(absl::CivilSecond::max(), syd); |
| 1076 | EXPECT_EQ(absl::InfiniteFuture(), t); |
| 1077 | t = absl::FromCivil(absl::CivilSecond::max(), nyc); |
| 1078 | EXPECT_EQ(absl::InfiniteFuture(), t); |
| 1079 | } |
| 1080 | |
| 1081 | TEST(Time, FromCivilAlignment) { |
| 1082 | const absl::TimeZone utc = absl::UTCTimeZone(); |
| 1083 | const absl::CivilSecond cs(2015, 2, 3, 4, 5, 6); |
| 1084 | absl::Time t = absl::FromCivil(cs, utc); |
| 1085 | EXPECT_EQ("2015-02-03T04:05:06+00:00", absl::FormatTime(t, utc)); |
| 1086 | t = absl::FromCivil(absl::CivilMinute(cs), utc); |
| 1087 | EXPECT_EQ("2015-02-03T04:05:00+00:00", absl::FormatTime(t, utc)); |
| 1088 | t = absl::FromCivil(absl::CivilHour(cs), utc); |
| 1089 | EXPECT_EQ("2015-02-03T04:00:00+00:00", absl::FormatTime(t, utc)); |
| 1090 | t = absl::FromCivil(absl::CivilDay(cs), utc); |
| 1091 | EXPECT_EQ("2015-02-03T00:00:00+00:00", absl::FormatTime(t, utc)); |
| 1092 | t = absl::FromCivil(absl::CivilMonth(cs), utc); |
| 1093 | EXPECT_EQ("2015-02-01T00:00:00+00:00", absl::FormatTime(t, utc)); |
| 1094 | t = absl::FromCivil(absl::CivilYear(cs), utc); |
| 1095 | EXPECT_EQ("2015-01-01T00:00:00+00:00", absl::FormatTime(t, utc)); |
| 1096 | } |
| 1097 | |
| 1098 | TEST(Time, LegacyDateTime) { |
| 1099 | const absl::TimeZone utc = absl::UTCTimeZone(); |
| 1100 | const std::string ymdhms = "%Y-%m-%d %H:%M:%S"; |
| 1101 | const int kMax = std::numeric_limits<int>::max(); |
| 1102 | const int kMin = std::numeric_limits<int>::min(); |
| 1103 | absl::Time t; |
| 1104 | |
| 1105 | t = absl::FromDateTime(std::numeric_limits<absl::civil_year_t>::max(), |
| 1106 | kMax, kMax, kMax, kMax, kMax, utc); |
| 1107 | EXPECT_EQ("infinite-future", |
| 1108 | absl::FormatTime(ymdhms, t, utc)); // no overflow |
| 1109 | t = absl::FromDateTime(std::numeric_limits<absl::civil_year_t>::min(), |
| 1110 | kMin, kMin, kMin, kMin, kMin, utc); |
| 1111 | EXPECT_EQ("infinite-past", |
| 1112 | absl::FormatTime(ymdhms, t, utc)); // no overflow |
| 1113 | |
| 1114 | // Check normalization. |
| 1115 | EXPECT_TRUE(absl::ConvertDateTime(2013, 10, 32, 8, 30, 0, utc).normalized); |
| 1116 | t = absl::FromDateTime(2015, 1, 1, 0, 0, 60, utc); |
| 1117 | EXPECT_EQ("2015-01-01 00:01:00", absl::FormatTime(ymdhms, t, utc)); |
| 1118 | t = absl::FromDateTime(2015, 1, 1, 0, 60, 0, utc); |
| 1119 | EXPECT_EQ("2015-01-01 01:00:00", absl::FormatTime(ymdhms, t, utc)); |
| 1120 | t = absl::FromDateTime(2015, 1, 1, 24, 0, 0, utc); |
| 1121 | EXPECT_EQ("2015-01-02 00:00:00", absl::FormatTime(ymdhms, t, utc)); |
| 1122 | t = absl::FromDateTime(2015, 1, 32, 0, 0, 0, utc); |
| 1123 | EXPECT_EQ("2015-02-01 00:00:00", absl::FormatTime(ymdhms, t, utc)); |
| 1124 | t = absl::FromDateTime(2015, 13, 1, 0, 0, 0, utc); |
| 1125 | EXPECT_EQ("2016-01-01 00:00:00", absl::FormatTime(ymdhms, t, utc)); |
| 1126 | t = absl::FromDateTime(2015, 13, 32, 60, 60, 60, utc); |
| 1127 | EXPECT_EQ("2016-02-03 13:01:00", absl::FormatTime(ymdhms, t, utc)); |
| 1128 | t = absl::FromDateTime(2015, 1, 1, 0, 0, -1, utc); |
| 1129 | EXPECT_EQ("2014-12-31 23:59:59", absl::FormatTime(ymdhms, t, utc)); |
| 1130 | t = absl::FromDateTime(2015, 1, 1, 0, -1, 0, utc); |
| 1131 | EXPECT_EQ("2014-12-31 23:59:00", absl::FormatTime(ymdhms, t, utc)); |
| 1132 | t = absl::FromDateTime(2015, 1, 1, -1, 0, 0, utc); |
| 1133 | EXPECT_EQ("2014-12-31 23:00:00", absl::FormatTime(ymdhms, t, utc)); |
| 1134 | t = absl::FromDateTime(2015, 1, -1, 0, 0, 0, utc); |
| 1135 | EXPECT_EQ("2014-12-30 00:00:00", absl::FormatTime(ymdhms, t, utc)); |
| 1136 | t = absl::FromDateTime(2015, -1, 1, 0, 0, 0, utc); |
| 1137 | EXPECT_EQ("2014-11-01 00:00:00", absl::FormatTime(ymdhms, t, utc)); |
| 1138 | t = absl::FromDateTime(2015, -1, -1, -1, -1, -1, utc); |
| 1139 | EXPECT_EQ("2014-10-29 22:58:59", absl::FormatTime(ymdhms, t, utc)); |
| 1140 | } |
| 1141 | |
| 1142 | TEST(Time, NextTransitionUTC) { |
| 1143 | const auto tz = absl::UTCTimeZone(); |
| 1144 | absl::TimeZone::CivilTransition trans; |
| 1145 | |
| 1146 | auto t = absl::InfinitePast(); |
| 1147 | EXPECT_FALSE(tz.NextTransition(t, &trans)); |
| 1148 | |
| 1149 | t = absl::InfiniteFuture(); |
| 1150 | EXPECT_FALSE(tz.NextTransition(t, &trans)); |
| 1151 | } |
| 1152 | |
| 1153 | TEST(Time, PrevTransitionUTC) { |
| 1154 | const auto tz = absl::UTCTimeZone(); |
| 1155 | absl::TimeZone::CivilTransition trans; |
| 1156 | |
| 1157 | auto t = absl::InfiniteFuture(); |
| 1158 | EXPECT_FALSE(tz.PrevTransition(t, &trans)); |
| 1159 | |
| 1160 | t = absl::InfinitePast(); |
| 1161 | EXPECT_FALSE(tz.PrevTransition(t, &trans)); |
| 1162 | } |
| 1163 | |
| 1164 | TEST(Time, NextTransitionNYC) { |
| 1165 | const auto tz = absl::time_internal::LoadTimeZone("America/New_York"); |
| 1166 | absl::TimeZone::CivilTransition trans; |
| 1167 | |
| 1168 | auto t = absl::FromCivil(absl::CivilSecond(2018, 6, 30, 0, 0, 0), tz); |
| 1169 | EXPECT_TRUE(tz.NextTransition(t, &trans)); |
| 1170 | EXPECT_EQ(absl::CivilSecond(2018, 11, 4, 2, 0, 0), trans.from); |
| 1171 | EXPECT_EQ(absl::CivilSecond(2018, 11, 4, 1, 0, 0), trans.to); |
| 1172 | |
| 1173 | t = absl::InfiniteFuture(); |
| 1174 | EXPECT_FALSE(tz.NextTransition(t, &trans)); |
| 1175 | |
| 1176 | t = absl::InfinitePast(); |
| 1177 | EXPECT_TRUE(tz.NextTransition(t, &trans)); |
| 1178 | if (trans.from == absl::CivilSecond(1918, 03, 31, 2, 0, 0)) { |
| 1179 | // It looks like the tzdata is only 32 bit (probably macOS), |
| 1180 | // which bottoms out at 1901-12-13T20:45:52+00:00. |
| 1181 | EXPECT_EQ(absl::CivilSecond(1918, 3, 31, 3, 0, 0), trans.to); |
| 1182 | } else { |
| 1183 | EXPECT_EQ(absl::CivilSecond(1883, 11, 18, 12, 3, 58), trans.from); |
| 1184 | EXPECT_EQ(absl::CivilSecond(1883, 11, 18, 12, 0, 0), trans.to); |
| 1185 | } |
| 1186 | } |
| 1187 | |
| 1188 | TEST(Time, PrevTransitionNYC) { |
| 1189 | const auto tz = absl::time_internal::LoadTimeZone("America/New_York"); |
| 1190 | absl::TimeZone::CivilTransition trans; |
| 1191 | |
| 1192 | auto t = absl::FromCivil(absl::CivilSecond(2018, 6, 30, 0, 0, 0), tz); |
| 1193 | EXPECT_TRUE(tz.PrevTransition(t, &trans)); |
| 1194 | EXPECT_EQ(absl::CivilSecond(2018, 3, 11, 2, 0, 0), trans.from); |
| 1195 | EXPECT_EQ(absl::CivilSecond(2018, 3, 11, 3, 0, 0), trans.to); |
| 1196 | |
| 1197 | t = absl::InfinitePast(); |
| 1198 | EXPECT_FALSE(tz.PrevTransition(t, &trans)); |
| 1199 | |
| 1200 | t = absl::InfiniteFuture(); |
| 1201 | EXPECT_TRUE(tz.PrevTransition(t, &trans)); |
| 1202 | // We have a transition but we don't know which one. |
| 1203 | } |
| 1204 | |
| 1205 | } // namespace |